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Abstract

We define a probability distribution over the set of Boolean functions of k variables induced by the tree
representation of Boolean expressions. The law we are interested in is inspired by the growth model of
Binary Search Trees: we call it the growing trees law. We study it over different logical systems and compare
the results we obtain to already known distributions induced by the tree representation: Catalan trees,
Galton-Watson trees and balanced trees.
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1 Introduction

A Boolean function of k variables is a function f : {0, 1}k −→ {0, 1} where 0 and 1 may be interpreted
as the truth values False and True. Our aim is to build a probability distribution over the set of Boolean
functions and to study it.

The uniform distribution over the set of Boolean functions of k variables - denoted by Fk - has been
studied by Shannon [Sha49]. If we define the complexity of a Boolean function as the minimal number
of connectives needed to represent this function by a Boolean expression, then a Boolean function chosen
uniformly at random has, asymptotically when k tends to infinity, an exponential complexity. As the maximal
complexity is also of exponential order, roughly speaking, an average Boolean function is asymptotically of
maximal complexity. This phenomenon is called the Shannon effect.

Lefmann and Savický [LS97] and later Chauvin et al. [CFGG04] studied random distributions induced
by tree representation of Boolean functions. Indeed, complete binary trees - i.e. trees whose internal nodes
have either zero or two sons - with nodes labelled with connectives - for example ∧ and ∨ - and with leaves
labelled with literals x1, x̄1, . . . , xk, x̄k represent Boolean functions, and a random distribution over the set
of such trees induces a random distribution over Fk. Both articles define the Catalan trees distribution. The
size of a binary tree is the number of its internal nodes1. Let Un,k be the uniform distribution over labelled
binary trees of size n over k variables and µn,k the distribution induced by Un,k on Fk. The limit distribution
µk of µn,k when n tends to infinity exists and is called the Catalan trees distribution.

Chauvin et al. study another distribution over binary trees induced by a critical Galton-Watson process
which are randomly labelled afterwards. It gives a distribution over Fk denoted by πk. It has been shown
[CFGG04, GG10] that every Boolean function is weighted, but Boolean functions with lower complexity are
more weighted by both µk and πk.

In the present paper we now consider another distribution induced by the tree representation: the growing
trees distribution. This distribution is inspired by the Binary Search Tree growing process. We then label
the binary trees according to two different models: the ∧/∨ model - studied in [LS97, CFGG04] - and the
implication model - used to compare intuitional and classical logics in [FGGZ07, KZ04].

In part 2, we define precisely the growing trees model and the two labelling models, before stating our main
results in the following part: Theorems 1 and 2 (proved in part 4) give the convergence of the growing trees
distribution to a distribution which support is included into the set of constant functions in both labelling
models, and Theorem 3 (proved in part 6) deals with the proportion of simple tautologies among tautologies.
Finally, some extensions of the two labelling models are presented respectively in parts 5 and 6.

2 Growing trees

First, let us define a new distribution over unlabelled trees of size n - the growing trees distribution - via a
random process stopped at step n.

Definition 1. The growing process (Ti)i∈N is defined by:

• T0 is reduced to its root.

• Given Ti, we choose uniformly at random a leave of the tree and make it grow by giving it two sons.
The new tree is Ti+1.

The random variable Tn is called the growing tree of size n. To define a distribution over the set Ek of
random Boolean expressions over k variables, we have to choose a rule to label randomly the nodes. We
choose to study two of them: the ∧/∨ model, which is complete - i.e. each Boolean function can be expressed
in this logical system, and the implication model, which is simpler but not complete, and nevertheless useful
to compare intuitional and classical logics [FGGZ07, KZ04].

Definition 2. The ∧/∨ model. Given a growing tree of size n, we label it according to the following rules:

• Each internal node is labelled by ∧ or ∨ with probability 1
2 and 1

2 .

• Each leave is labelled by a literal chosen uniformly at random in the set {x1, x̄1, . . . , xk, x̄k}.

1Let us note that a binary tree with n internal nodes has n+ 1 leaves.
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• All the labellings are independent from each other.

The implication model. Given a growing tree of size n, we label it according to the following rules:

• Each internal node is labelled by →.

• Each leave is labelled independently from the others by a literal chosen uniformly at random in the set
{x1, . . . , xk}.

Each model defines a distribution, respectively P∧∨n,k and P→n,k - denoted by Pn,k when there is no possible
confusion - over Ek, the set of Boolean expressions over k variables. Let us define a surjective mapping Φ
from Ek to Fk as follows2:

Φ(γ) = f if and only if γ represents (or computes) f.

The image of Pn,k by Φ over Fk is a distribution over Fk denoted by pn,k: ∀f ∈ Fk, pn,k(f) =Pn,k ({γ ∈ Ek such as Φ(γ) = f}).
Our aim is now to study the behaviour of pn,k when the size n of the random tree tends to infinity: does

it tend to a limit distribution pk? What are the properties of this distribution pk if it exists? Is there any
Shannon effect on pk when k tends to infinity?

3 Main results

Surprisingly, the growing tree model is a very simple model. Indeed, in both labelling models, the asymptotic
distribution pk exists and its support is included into the set of the constant fonctions. Moreover, the speed
of the convergence is of order O

(
1

lnn

)
. We prove the following theorems:

Theorem 1 (Growing trees - ∧/∨ model). In the case of the ∧/∨ labelling model, we have: pn,k −→ pk =
1
2δTrue + 1

2δFalse when n −→ +∞. Moreover, ‖pn,k − pk‖∞ = O
(

1
lnn

)
when n −→ +∞.

Theorem 1 can be extended to a more general labelling model, as shown in part 5.

Theorem 2 (Growing trees - implication model). In the case of the implication labelling model, we have:
pn,k −→ pk = δTrue when n −→ +∞. Moreover, ‖pn,k − pk‖∞ = O

(
1

lnn

)
when n −→ +∞.

To sum up, the asymptotic distribution pk does not depend on k and there is obviously no Shannon effect
as the average complexity of a fonction chosen at random according to pk is the complexity of a constant: 1.

Remark: The difference between the two theorems comes from the fact that the function False cannot be
represented by an expression built with the single connective → and with the positive literals {x1, . . . , xk}.
A function can be expressed in this model if and only if there exists i ∈ J1, kK and g ∈ Fk such as f = xi ∨ g.

In the Catalan trees and Galton-Watson models, an important part of the study in the implication
labelling model was to consider simple tautologies, which are "simple" Boolean expressions that compute
True:

Definition 3 ([FGGZ07]). In the implication labelling model, every Boolean expression can be written as:
A1 → (A2 → . . . (Ap → α)). The subtrees A1, . . . , Ap are called the premises of the Boolean expression and α
is called the goal. A simple tautology is a Boolean expression which has a premise reduced to a simple leave,
labelled by α.

Let STk be the set of simple tautologies over k variables.

It has been shown [FGGZ07] that either in the Catalan trees or in the Galton-Watson model, roughly
speaking, every tautology is a simple tautology, asymptotically when k tends to infinity. The following
theorem states that in the growing trees model, we get a different behaviour:

Theorem 3. We have: Pn,k(TSk) n→+∞
−−−−−→ 1− e

−1/k k→+∞
∼ 1

k .

Since Pn,k({tautologies}) = pn,k(True)
n→+∞
−−−−−→ 1, simple tautologies are not the only ones charged by

the growing trees law, asymptotically when k tends to infinity.

2Of course, this is not a one-to-one mapping since a same fonction can be represented by different expressions. For example,
Φ(x1 ∧ x̄1) = Φ(x2 ∧ x̄2) = False.
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4 Proofs of Theorems 1 and 2

We present two different proofs for Theorems 1 and 2: one using an analytic combinatorics approach, and
a probabilistic approach via Yule trees. The first one is the one already used to study the Catalan trees or
the Galton-Watson model: it is a general approach but it does not give the convergence speed easily. The
probabilistic approach is more powerful: it is shorter and gives the speed of the convergence quite easily, but
it is specific to the growing trees model. In both approaches, the proofs of Theorems 1 and 2 are almost the
same. Therefore, we only present the proof of Theorem 1, which is the most complicated since there are two
connectives instead of one.

4.1 The analytic combinatorics approach.

The idea of this proof is to use generating functions and analytic combinatorics methods, as presented, e.g.,
by Flajolet and Sedgewick [FS09]. Given a Boolean function f , we define its generating function as:

φf (z) =

+∞∑

n=0

pn(f)z
n

where pn(f) is the probability that the growing tree Tn of size n computes f . Now, Tn computes f if and
only if

• n = 0, f = α is a literal, and the root of T0 (which is also its single node) is labelled by α; or

• n 6= 0, the left subtree of Tn computes g, the right subtree of Tn computes h, the root of Tn is labelled
by ⋄ ∈ {∧,∨} and f = g ⋄ h.

Moreover the subtrees of Tn are also growing trees, and the probability that the left subtree has size i is 1
n .

Therefore, by conditioning on the size of the left subtree, we obtain the following formula:

pn+1,k(f) =
1

2

∑

g∧h=f

n∑

i=0

1

n+ 1
pi,k(g)pn−i,k(h) +

1

2

∑

g∨h=f

n∑

i=0

1

n+ 1
pi,k(g)pn−i,k(h). (1)

By multiplying (1) by zn+1 and summing for n ≥ 0, we get a relationship between the 22k different generating
functions:

2φf (z)− 2p0,k(f) =

∫
∑

g∧h=f

φg(z)φh(z)dz +

∫
∑

g∨h=f

φg(z)φh(z)dz. (2)

Deriving formula (2), we finally obtain the

Lemma 1. ∀f ∈ Fk, we have: 2φ′f (z) =
∑

g∧h=f φg(z)φh(z) +
∑

g∨h=f φg(z)φh(z).

Lemma 1 gives a differential system verified by the 22k generating fonctions for the 22k Boolean functions
of Fk. Studies of the Catalan trees and of the Galton-Watson model by this method both lead to very similar
systems, except that they are both algebraic systems (cf. [CFGG04]). In those cases, the Drmota-Lalley-
Woods theorem allowed to conclude easily since it applies for algebraic systems ([Drm97, Lal93, Woo97]). In
our case, this theorem cannot apply due to the differential operator. Luckily, we can still obtain a solution
of the system from Lemma 1.

First we observe obvious symmetries that simplify the system. Indeed, in the growing trees model, the
two connectives ∧ and ∨ have the same probability. E.g., the functions x1 ∧ x2 and x1 ∨ x2 have the same
probability to be computed by a growing tree: they thus have the same generating function. Moreover, all
the literals have the same probability to appear as labels of each leaf: for example, x1 ∧ x2 and x1 ∧ x3 have
the same probability to be computed by a growing tree. We can thus define equivalency classes of Boolean
functions with the same generating function. One class is {False, T rue}: let us denote by φV the generating
function of both False and True, and by φ1, . . . , φq the generating functions of the q other equivalency
classes - a detailed study of these classes can be found in an article by Harrison [Har64].
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By replacing in the system obtained from Lemma 1 each generating function by the generating function
of its equivalency class, we can reduce it to a system of q + 1 differential equations:







φ′V = PV (φV , φ1, . . . , φq);
φ′1 = P1(φV , φ1, . . . , φq);

...
φ′q = Pq(φV , φ1, . . . , φq).

(3)

Then we introduce σi = φi ◦ φ
−1
V for all i ∈ J1, qK: indeed, φV is strictly increasing on the real line and thus

inversible on its neighborhood. We have:






σ′1(u) =
P1(u, σ1(u), . . . , σq(u))

PV (u, σ1(u), . . . , σq(u))
;

...

σ′q(u) =
Pq(u, σ1(u), . . . , σq(u))

PV (u, σ1(u), . . . , σq(u))
.

(4)

where P1, . . . , Pq and PV are homogeneous polynomials of degree 2.
To study the solutions of system (4), we note that the u2 monomial only appears in PV (u, σ1(u), . . . , σq(u)):

if both subtrees compute a constant (True or False) then, the whole tree computes a constant. Thus, the
following lemma can be applied to the system (4).

Lemma 2. If Y : R −→ Rn verifies the differential equation

Y ′ = f(x, Y ) with lim
‖Z‖∞−→∞

lim
x−→∞

f(x, Z) = 0

and if f = (f1, . . . , fn) with f1, . . . , fn > 0, then each coordinate of Y (x) is of order o(x).

Proof. This lemma results from standard arguments: we detail a proof in appendix for completeness sake.

Thanks to Lemma 2, we claim that for all i ∈ J1, qK, we have:

σi(u) = o(u) as u −→ +∞. (5)

Let us remind that system (3) gives φ′V = PV (φV , φ1, . . . , φq) with φi = σi ◦ φV . Thus, φ′V = G(φV ),
where G(w) = PV (w, σ1(w), . . . , σq(w)). Therefore, φV verifies the hypothesis of

Lemma 3. If y verifies the differential equation y′ = G(y) where G is non negative and G(x)
x−→∞
∼ cx2,

then there exists x0 such that

y(x)
x−→x0∼

1

c (x0 − x)
.

Proof. See Appendix.

Thanks to Lemma 3, we conclude that there exists a constant c and a real number u0 such that:

φV (u)
u−→u0∼

1

c (u0 − u)
.

By applying a classical transfer lemma [FO90] (detailed in [FS09, page 389]), we state that:

pn,k(True) = pn,k(False) = [un]φV (u)
n−→∞
∼

γ

un0
, (6)

where γ is a constant. Moreover, thanks to (5), we have: φi(u)
u−→u0= o

(
c

(u−u0)

)

; applying again the transfer

lemma, we get: [un]φi(u)
n−→∞

= o(1). Hence, u0 = 1, finally, since the sum of the 22k generating functions is
1

1−z and using (6), we obtain γ = 1
2 . We have hence proved

pn,k(True) = [un]φV (u)
n−→+∞
−→

1

2
, (7)

which is the first assertion of Theorem 1. The convergence speed would follow from a second-order evaluation
of the differential system; however it can be more simply obtained from the probabilistic approach presented
below.
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4.2 The probabilistic approach.

The idea of this proof - due to Pittel [Pit84] - is to embed the discrete process of the growing tree into
continuous time by using exponential clocks. This embedding gives us independence between the right and
left subtrees at each node of the tree.

Definition 4. A Yule tree is a continuous time process of binary trees (Yt)t≥0 growing according to the
following rules:

• Y0 is a single root;

• each leaf of Yt gives birth to two sons at the end of a random time following an exponential law of
parameter 1, independently from the other leaves.

Definition 5. A labelled Yule tree is a continuous time process (Et)t≥0 of labelled binary trees, which evolves
according to the following rules:

• the underlying binary tree is a Yule tree;

• each new leaf is labelled by a literal chosen uniformly at random into {x1, x̄1, . . . , xk, x̄k} ;

• each new internal node is labelled by ∧ or ∨ uniformly at random;

• each labelling is independent from the others.

Let us denote by Pt the image by Φ of the law of Et.

Fact: For all t ≥ 0, let us denote by n(t) the number of internal nodes of Et. Then, Et has the same law as
Tn(t): it is a growing tree of size n(t).

To prove Theorem 1, the idea - inspired from an article about balanced binary trees [FGG09] - is to
consider the probability that two different assignments have distinct images by the random Boolean function,
and to prove that it tends to 0 as t tends to infinity. Therefore, only constant fonctions - i.e. True and False
- will be charged by the asymptotic distribution.

Let a = (a1, . . . , ak) and b = (b1, . . . , bk) be two distinct elements of {0, 1}k, which means two different

assignments of the k variables. Let α and β be two elements of {0, 1}. For all t ≥ 0, we denote P
αβ
t (a, b) =

Pt (f(a) = α and f(b) = β).

Fact: Thanks to the symmetries between ∧ and ∨ and the variables and their negations, we get P
01
t (a, b) =

P
10
t (a, b) and P

00
t (a, b) = P

11
t (a, b).

Conditionning on the time when the root’s clock rings, which has an exponential law of parameter 1, we
get:

P
10
t =

k∑

i=1

e
−t

2k

(1{ai=1 et bi=0} + 1{ai=0 et bi=1}

)

+
1

2

∫ t

0

(
P

11
t−sP

10
t−s + P

10
t−s(P

11
t−s + P

01
t−s) + P

01
t−s(P

00
t−s + P

10
t−s) + P

00
t−sP

10
t−s

)
e
−sds

=
e
−t

2k
ca,b + e

−t

∫ t

0

(
P

10
s − (P10

s )2
)

e
sds

where ca,b is a constant depending only on a and b. Let πa,b(t) = P
10
t (a, b). We have:

e
tπa,b(t) =

ca,b

2k
+

∫ t

0

(
πa,b(s)− πa,b(s)

2
)

e
sds. (8)

We can easily show that πa,b is differentiable, and thus, thanks to (8), we get π′a,b+π
2
a,b = 0. Let us remark that

if a 6= b then πa,b(0) =
ca,b
2k 6= 0, thus πa,b(t) = 1

t−t0
where t0 = 2k

ca,b
. Thus, P

10
t (a, b) −→ 0 for all a, b ∈ {0, 1}k.
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Fact: If a = b, πa,a(0) = 0 and we check that πa,a(t) = 0 for all t: a single element a cannot have two
different images by a function f .

To conclude, we only have to note that:

Pt(Fk \ {True, False}) ≤
∑

(a,b),a6=b

Pt(f(a) = 1 et f(b) = 0) ≤ 2k(2k − 1) sup
(a,b)

P
10
t (a, b) ≤

2k(2k − 1)

t− 1
2

⇒ ∀f ∈ Fk \ {True, False}, lim
t→+∞

Pt(f) = 0

Moreover, Pt({True, False}) ≥
1
2

(

1− 2k(2k−1)

t− 1
2

)

, which leads to limt→+∞ Pt(True) + Pt(False) ≥ 1, i.e.

limt→+∞ Pt(True) = limt→+∞ Pt(False) = 1
2 . Thus, Pt tends to a limit distribution pk = 1

2δTrue + 1
2δFalse

with a convergence speed of order 1
t : ‖Pt − pk‖∞ ≤

2k(2k−1)
t− 1

2

.

Fact: If Tn is the random variable defined by Tn = inf{t ≥ 0 such that n(t) = n} then |Tn − lnn| tends to
zero almost surely as n tend to infinity.

Moreover, pn = PTn almost surely and we thus can easily see that for large enough n: ‖pn,k − pk‖∞ ≤
2k(2k−1)

lnn− 3
4

= O
(

1
lnn

)
.

5 Extensions of Theorem 1

In this section, we consider the extension of our results to more general models. The first way is to bias
the law over the literals in both labelling models (c.f. Definition 2); the second is to bias the law over the
connectives in the ∧/∨ model, and the third to study the ∧/∨ model with only positive literals. These last
two labelling models have been studied by Fournier et al. [FGG09] in the case of balanced binary trees
(binary trees whose all leaves are at the same level). The results we have are very similar to those obtained
in the case of balanced trees.

Biasing the law over the literals.

Let us study a slightly different labelling model. We still label each node by ∧ or ∨ with probability 1
2

independently from each other. But we now label each leaf according to a law ν such that ∀i ∈ J1, kK,
ν(xi) = ν(x̄i) > 0, independently from each other. In this case, since the symmetry between the variables
and their negations still holds, the behaviour of the induced probability law pn over Fk is the same as in the
uniform case - when ν is the uniform law over {x1, x̄1, . . . , xk, x̄k} - studied just before.

Indeed, in both proofs developped before, the modifications appear only in constants - p0,k(f) in (2) and
ca,b in (8) - which disappear when we take the derivative of the equations. Therefore, the result is the same
as for the uniform case.

Biaising the law over connectives in the ∧/∨ model.

Let us introduce another labelling model over growing trees of size n: the biased model.

• Each internal node is labelled according to the law pδ∧ + (1− p)δ∨ with p ∈ [0, 1] independently from
the other nodes.

• Each leaf is labelled according to a law ν over {x1, x̄1, . . . , xk, x̄k} such that ∀i ∈ J1, kK, ν(xi) = ν(x̄i) >
0, independently from the others.

This process defines a new induced distribution pn,k over Fk whose behaviour is determined in the following:

Theorem 4. In the biased model, if P(∧) = p, then:
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• If p > 1
2 , then pn,k −→ δFalse. • If p < 1

2 , then pn,k −→ δTrue.

Moreover, the convergence speed is of order O
(

1
n

)
in both cases.

Remark: It is interesting to note that in the balanced case p = 1
2 (c.f. Theorem 1), the convergence speed

is of order 1
lnn while it is of order 1

n in Theorem 4.

Proof. We can again develop two different proofs that are very close to the proofs of Theorem 1. See Appendix
for a delailed version of the probabilistic approach.

The ∧/∨ model with positive literals

Let us introduce a last labelling model for growing trees: the positive model.

• Each internal node is labelled according to the law pδ∧ + (1− p)δ∨ with p ∈ [0, 1] independently from
the other nodes.

• Each leaf is labelled according to a law µ over {x1, . . . , xk} independently from the others.

This process defines a new induced law - still denoted pn,k - over Fk whose behaviour is determined in the
following Theorem:

Theorem 5. In the positive model, we have:

• If p > 1
2 , then pn,k −→ δx1∧...∧xk. • If p < 1

2 , then pn,k −→ δx1∨...∨xk.

And the convergence speed is in both cases of order O
(

1
n

)
.

Proof. For this theorem we only develop the probabilistic approach (very similar to the probabilistic proof
of Theorem 1) that can be read in appendix.

In fact, Theorem 5 is not complete since we have not studied the case p = 1
2 which is a natural extension

of the ∧/∨ model. Surprisingly, this last case is the most complicated of the whole study. To state our last
theorem, we have to present the definition of a threshold function - first introduced in [Ser04] and used in
[FGG09]. We show that the asymptotic distribution of the pn,k exists and that its support is included in a
finite set of threshold functions.

Definition 6 ([FGG09]). Let a = (a1, . . . , ak) ∈ {0, 1}
k. The weight of a relatively to the distribution ν is

the real number ων(a) = ν(x1)a1 + . . .+ ν(xk)ak.

Definition 7 ([FGG09]). A Boolean function f is a threshold function if there exists a real number θ ≥ 0
such that ∀(a1, . . . , ak) ∈ {0, 1}

k, f(a1, . . . , ak) = 1 ⇔ ων(a) ≥ θ. We denote by Tν,θ the threshold function
associated to the constant θ and to the distribution ν.

Theorem 6. Let us number the different elements of {0, 1}k in order of increasing weight ων : ων(a
(1)) ≤

ων(a
(2)) ≤ . . . ≤ ων(a

(2k)). Then, pn,k
n→+∞
−→

∑2k

j=1

(
ων(a

(j))− ων(a
(j−1))

)
δT
ν,ων(a(j) )

where ων(a0) := 0.

Said differently, pn,k tends to an asymptotic distribution law pk that satisfies: pk(Tν,ων(a(j))) = ων(a
(j))−

ων(a
(j−1)) and, if f is a Boolean function different from Tν,ων(a(j)) for all j ∈ J1, 2kK, then pk(f) = 0.

Proof. The proof is once again based on Yule trees: we did not handle a proof based on analytic combinatorics.
The probabilistic approach is natural in this case, since it is an extension of the proof developped in [FGG09]
in the case of balanced trees. Let Et be a Yule tree, a = (a1, . . . , ak) and b = (b1, . . . , bk) in {0, 1}k be two
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assignments of the k variables, and α, β in {0, 1}. For all t ≥ 0, let παβ(t) = Pt(f(a) = α and f(b) = β). Let
us compute π10 by conditionning on the time when the root’s clock rings.

π10(t) = e
−t

k∑

i=1

ai(1 − bi)ν(xi)

+

∫ t

0

1

2
(π11(t− s)π10(t− s) + π10(t− s)(π10(t− s) + π11(t− s))) e

−s

+
1

2
(π10(t− s)(π10(t− s) + π00(t− s)) + π10(t− s)π00(t− s)) e

−sds

This gives π10(t)et =
∑k
i=1 ai(1 − bi)ων(xi) +

∫ t

0

(
π10(s)2 + π10(s)π11(s) + π10(s)π00(s)

)
e
sds. By deriving

and using the obvious relation π11 +π10 +π01 +π00 = 1, we get: π′10 = −π10π01. Doing the same computation
for π00, π01 and π11, we obtain the differential system:







π′10 = −π10π01;
π′01 = −π10π01;
π′11 = π10π01;
π′00 = π10π01.

(9)

Thanks to (9), we can see that π10(t) and π01(t) are decreasing functions of t; since they are both positive,
they have a limit as t −→ +∞. In the same way, π11 and π00 are increasing and thus convergent. Let us
denote lαβ = limt→∞ παβ(t).

Since παβ is monotone and convergent for t tends to +∞, its derivative tends to zero as t −→ +∞. thus,
taking the limit in system (9), we get:

l10l01 = 0. (10)

Moreover, π10 − π01 is a constant; then,

l10 − l01 = π10(0)− π01(0) = ων(a)− ων(b). (11)

Thus, if ων(a) ≥ ων(b), then, thanks to (10) and (11), we get: l01 = 0. If ων(a) ≥ ων(b), then Pt(f(a) =
0 and f(b) = 1) −→ 0 as t −→ +∞. Said differently, if there exists a and b such that ων(a) ≥ ων(b) and
f(a) = 0 and f(b) = 1, then pn,k(f) −→ 0 as n −→ +∞. The only Boolean functions weighted by pn,k when
n tends to infinity are those verifying ∀a, b such that ων(a) ≥ ων(b) ⇒ f(a) ≥ f(b). And those functions are
threshold functions: only threshold functions can be weighted by the asymptotic law of the pn,k, if this law
exists.

The calculations we made in the non-uniform positive model can be done again in this case to prove that
Pt(f(a) = 1) is a constant for all a. Thus Pt(f(a) = 1) = ων(a) and

pn,k(Tν,ων(a(1))) + . . .+ pn,k(Tν,ων(a(j))) −→ ων(a
(j)) for all j ∈ J1, 2kK.

Thus pn,k(Tν,ων(a(j))) −→ ων(a
(j)) − ων(a

(j−1)), and as
∑2k

j=1 ων(a
(j)) − ων(a

(j−1)) = 1, we indeed proved
Theorem 6.

6 Proof and extension of Theorem 3

6.1 Proof of Theorem 3

Proof. The proof has two steps: first, we compute the law of fn the number of premises that are reduced
to a simple leave in a growing tree of size n - we call them nice premises. This first step can be handled by
modelling the system by a Pólya urn.

Indeed, let us consider an urn containing three kinds of balls, representing three kinds of leaves of the tree.
The white balls, standing for the nice premises; one red ball, standing for the goal of the Boolean expression;
and some black balls standing for the other leaves. When the growing tree grows, we choose one of its leaves
(i.e. one of the balls) uniformly at random, and

• if we choose the red ball, then we put it back into the urn and add a white ball (i.e. a nice premise);
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• if we choose a white ball, then we remove it from the urn and add two black balls into the urn;

• if we choose a black ball, then we put it back into the urn and add another black ball.

This urn can be studied by analytic combinatorics methods [FGP05] and it has been shown by Morcrette
[Mor10] that: P(fn = q) =

1

q!



e
−1 −

∑

j≥n+1−q

(−1)j

j!



 . (12)

The second step of the proof is to calculate Pn,k(STk) by conditionning over the number of nice premises:Pn,k(STk) =
∑n
q=1 P(fn = q)

(
1−
(
1− 1

k

)q)
since

(
1−
(
1− 1

k

)q)
is the probability that one of the nice

premises is labelled by the same label as the goal of the Boolean expression. Let c =
(
1− 1

k

)
.Pn,k(STk) =

n∑

q=1

1

q!



e
−1 −

∑

j≥n+1−q

(−1)j

j!



 (1− cq)

=

n∑

q=1

e
−1

q!
(1− cq)−

n∑

q=1

(1− cq)

q!

∑

j≥n+1−q

(−1)j

j!

= e
−1(e− 1− e

c + 1)−

∞∑

q=n+1

(1− cq)

q!
−Rn

= 1− e
−1/k − Sn −Rn

where Rn =
∑n
q=1

(1−cq)
q!

∑

j≥n+1−q
(−1)j

j! and Sn =
∑∞
q=n+1

(1−cq)
q! . Let show that Rn and Sn tend to zero

as n tends to infinity:
∑

j≥n+1−q
(−1)j

j! is an alternating series, thus |
∑

j≥n−q
(−1)j

j! | ≤
1

(n+1−q)! and:

|Rn| ≤

n+1−1∑

q=1

(1− cq)

q!(n+ 1− q)!
≤

1

(n+ 1)!

n∑

q=1

(
n+ 1
q

)

(1− cq) ≤

(
2n+1 − (1 + c)n+1

)

(n+ 1)!

n→∞
−−−−→ 0.

Moreover, Sn is the remainder of a convergent series, thus Sn
n→∞
−−−−→ 0.

6.2 An extension of Theorem 3

Simple tautologies have been studied in another labelling model: an implication model where negative literals
are allowed [FGGZ10]. We can prove, in the same way as we did for the classical implication model, that pn,k
tends to δTrue when n tends to infinity. In this new labelling model, there are two kinds of simple tautologies:
simple tautologies of first kind, defined in the same way as in the classic labelling model (c.f. Definition 3),
and simple tautologies of second kind:

Definition 8 ([FGGZ10]). A tautology of second kind is a Boolean expression in which two nice premises
are labelled respectively with a variable and its negation. We denote by ST 1

k (resp. ST 2
k ) the set of simple

tautologies of first kind (resp. second kind).

It has been shown that in both the Catalan trees and in the Galton-Watson model, all the tautologies
are simple tautologies of either first or second kind, asymptotically when k tends to infinity [FGGZ10]. We
show that it is not the case in the growing trees model:

Theorem 7. We have Pn,k(ST 1
k )
n→+∞
−−−−−→ 1− e

−1/2k k→+∞
∼ 1

2k ,

and Pn,k(ST 2
k )
n→+∞
−−−−−→ 1− 1

e
(2e

1/2k − 1)k
k→+∞
∼ 1

4k .

Therefore, in the implication model with positive and negative literals, there are again other tautologies
charged by the growing trees distribution, asymptotically when k tends to infinity.
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Proof. The first statement of Theorem 7 can be shown in the same way as Theorem 3. Let us consider the
second one. The equation (12) still holds: we only have to compute the probability that two nice premises
among q are labelled by a variable and its negation. The idea is to reformulate this problem in terms of a
birthday problem [JK97]. We have to assign q balls (labels of the nice premises) which are white or black
(positive or negative literals) with probability one half independently from the others into k urns (variables).
The probability that at least one urn contains at least one black ball and one white ball is the probability to
get a simple tautology of second kind.

By a symbolic method, we get that, if αr,q is the number of assignments of q balls into k urns that realize
r times a simple tautology of second kind, then Φ(t, z) :=

∑

r,q αr,qz
r tq

q! = (z(et−1)2 +2e
t−1)k. As Φ(t, 0) is

the generating function of the number of assignments of the q balls that do not realize a simple tautology of

second kind, we get that: Pn,k(ST 2
k |fn = q) =

[ t
q

q! ]Φ(t,0)

(2k)q =
α0,q

(2k)q , which, thanks to (12) gives, after calculation:Pn,k(TS2) = e
−1

n∑

q=0

α0,q

q! (2k)q

︸ ︷︷ ︸

Qn

−

n∑

q=0

α0,q

q! (2k)q

∑

j≥n+1−q

(−1)j

j!
︸ ︷︷ ︸

Rn

.

We then can easily show that Rn tends to zero as n tends to infinity, and that Qn
n→+∞
−−−−−→ 1

e
Φ( 1

2k , 0). Thus,Pn,k(TS2)
n→+∞
−→

1

e
Φ(

1

2k
, 0) =

1

e
(2e

1/2k − 1)k
k→+∞
∼

1

4k
.

7 Conclusions and perspectives

We have studied in this paper the behaviour of the growing trees under different labelling systems. This
behaviour is very different from the Catalan trees model and the Galton-Watson model [CFGG04], but very
similar to the balanced trees behaviour [FGG09]. Indeed, Theorems 1, 2, 4, 5 and 6 are true for balanced
trees. The similarity may be intuitively explained by the fact that the growing trees have a saturation level
of order lnn, i.e. a saturation level tending to infinity as the size of the tree is growing to infinity: roughly
speaking, a big growing tree contains a big balanced tree. On the contrary, Catalan trees and Galton-Watson
trees have a saturation level of order Θ(1). But the precise relationship between growing trees and balanced
trees still needs to be enlightened.

To sum up about the methods used in this paper, we have to note that the analytic combinatorics approach
is useful when the asymptotic law only charges constants (Theorems 1, 2 and 4). For the other results, we
prefer the probabilistic one, as it is more natural and give proofs that are very similar to those developped
in [FGG09] for balanced trees.
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Appendix

Proof of Lemma 2

Proof. We assume f1, . . . , fn > 0: therefore, each component of Y is strictly increasing. Let ǫ > 0. We have
lim

‖Z‖∞−→∞
lim
x−→∞

f(x, Z) = 0; thus,

∃y0 such that ∀‖Y ‖ ≥ y0, lim
x−→∞

f(x, Y ) = 0 <
ǫ

2
.

, thus,
∃y0 such that ∀‖Y ‖ ≥ y0, ∃x0(Y ) such that ∀x ≥ x0(Y ), ‖f(x, Y )‖∞ < ǫ.

First case: ∀x, ‖Y (x)‖∞ ≤ y0. Therefore, Y (x) is bounded, and Y (x) is indeed of order o(x).

Second case: ∃x1 such that ∀x ≥ x1, ‖Y (x)‖∞ ≥ y0. Let us denote x2 = max(x0, x1). Then, ∀x ≥ x2,
‖f (x, Y ) ‖∞ < ǫ. By interpreting the following computations component by component, we obtain:

Y (x) = Y (x2) +

∫ x

x2

f (x, Y )
︸ ︷︷ ︸

≤ǫ

dx

≤ Y (x2) + ǫ(x− x2).

Said differently, in both cases, Y (x) = o(x) component by component.

Proof of Lemma 3

Proof. We have dy
G(y) = dx, then

∫ y(x)

y0

dy

G(y)
= x− x̃0 with y0, x̃0 such that y(x̃0) = y0,

thus

∫ ∞

y0

dy

G(y)
−

∫ ∞

y(x)

dy

G(y)
= c0 −

∫ ∞

y(x)

dy

G(y)
= x− x̃0. Since

∫ ∞

y(x)

dy

G(y)

y(x)−→∞
∼

c

y(x)
,

we deduce c
y(x)

y(x)−→∞
∼ c0 + x̃0 − x, said differently,

y(x)
x−→x0∼

1

c(x0 − x)
.

Proof of Theorem 4

Proof. The cases p > 1
2 and p < 1

2 are symmetric and can be treated in the same way. In the proof, we
only consider the p > 1

2 case. As in the uniform ∧/∨ model, we can choose between two proofs: the analytic
combinatorics one and the probabilistic one. We present the approach via Yule trees since it gives easily the
convergence speed.

As before, we consider a labelled Yule tree (Et)t≥0 which induces a law Pt over Fk for all t ≥ 0. Let

a = (a1, . . . , ak) ∈ {0, 1}
k be an assignment of the k variables. We prove again that the probability that the

image of a by a random Boolean function of law Pt is 1, tends to 0 when t tend to infinity. Therefore, let us
study πa(t) := Pt(f(a) = 1).

12



Conditionning by the time when the root’s clock rings, with a law Exp(1), we get:

πa(t) =
e
−t

2k

k∑

i=1

(1ai=1 + 1ai=0) +

∫ t

0

[
p πa(t− s)

2 + (1− p)(2πa(t− s)− πa(t− s)
2)
]
e−sds,

e
tπa(t) =

1

2
+

∫ t

0

(
(2p− 1)πa(s)

2 + 2(1− p)πa(s)
)
esds.

Deriving and taking into account p 6= 1
2 , we get: πa + π′a = (2p− 1)π2

a + 2(1 − p)πa, from which we deduce
π′a = (2p− 1)(π2

a − πa), and finally that πa(t) = 1− 1
e

(1−2p)t+1
since πa(0) = 1

2 . Thus,

Pt(Fk \ {False}) ≤
∑

a

πa(t) ≤ 2k
(

1−
1

e(1−2p)t + 1

)

Thus, since p > 1
2 , limt→+∞ Pt(Fk \ {False}) = 0 and we have:

‖pn,k − δFalse‖∞ ≤ 2k
(

1−
1

e(1−2p)Tn + 1

)

= O

(
1

n

)

.

Proof of Theorem 5

Proof. As in the biased model, the proofs for p > 1
2 and p < 1

2 are very similar. We assume p > 1
2 in the

proof. Here again, we only developped the probabilistic approach. By the same computation as in the proof
of Theorem 4, we get:

πa(t) = Pt(f(a) = 1) = 1 +
1

λe(1−2p)t − 1
for all t ≥ 0 or πa = 1.

If a = (1, . . . , 1) then πa(0) =
∑k
i=1 1ai=1 = 1 and πa(t) = 1. Thus Pt(f(1, . . . , 1) = 1) = 1. Otherwise, if

a 6= (1, . . . , 1), then since p > 1
2 , we have limt→∞ Pt(f(a) = 1) = 0. Thus, the asymptotic law of the pn,k

exists and only charges the function x1 ∧ . . . ∧ xk.
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