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Abstract.
The fringe of a B-tree with parameter m is considered as a particular Pólya urn
with m colors. More precisely, the asymptotic behaviour of this fringe, when the
number of stored keys tends to infinity, is studied through the composition vector of
the fringe nodes. We establish its typical behaviour together with the fluctuations
around it. The well known phase transition in Pólya urns has the following effect
on B-trees: for m ≤ 59, the fluctuations are asymptotically Gaussian, though for
m ≥ 60, the composition vector is oscillating; after scaling, the fluctuations of such
an urn strongly converge to a random variable W . This limit is C-valued and it does
not seem to follow any classical law. Several properties of W are shown: existence
of exponential moments, characterization of its distribution as the solution of a
smoothing equation, existence of a density relatively to the Lebesgue measure on C,
support of W . Moreover, a few representations of the composition vector for various
values of m illustrate the different kinds of convergence.
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1 Introduction

B-trees are a fundamental structure in computer science, they have been introduced
in the early seventies by Bayer and McCreight [5, 6], to store large quantities of
data. These particular search trees are conceived in order to have all their leaves at
the same level. The nodes at the deepest level are called the fringe nodes. A precise
description can be found in Section 2 where are presented two classical algorithms
giving a B-tree. The actual writing of these algorithms can be found for example in
Cormen et al. [13] for one of them (the so-called prudent algorithm in the sequel),
in Kruse and Ryba [21] for the other one (called the optimistic algorithm in the
sequel).

The fringe analysis of B-trees goes back to Yao [30] and has been developped by
many authors (see for example the Baeza-Yates’ survey [3]), both for B-trees and
B+-trees (where all the keys are stored in the fringe nodes). In Yao’s paper [30]
appears the Pólya urn model, which we develop in this article. Indeed, the fringe
of a B-tree with parameter m (where m is a positive integer) can be considered as
a particular Pólya urn with m colors, so that a lot of information can be obtained
concerning the asymptotic behaviour of this fringe, when the number of stored keys
tends to infinity.
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Let us describe a Pólya urn process as follows. Consider an urn that contains balls
of, say, d different colors. Start with a finite number of different color balls as initial
composition (possibly monochromatic). At each discrete time n, draw a ball at
random, check its color, put it back into the urn and add balls according to the
following rule: if the drawn ball is of color i, add ai,j balls of color j, where the
ai,j are integer-valued. Thus, the replacement rule is described by the so-called
replacement matrix, which is a dimension d matrix, whose coefficients are the ai,j,
for i and j in {1, . . . , d}.
Usually, the integers ai,j are assumed to be nonnegative for i 6= j and the integers
ai,i are nonpositive or nonnegative. A negative coefficient ai,i means that, if a ball
of color i is drawn, then ai,i balls of color i are removed from the urn. In this case,
we have to ensure that at least ai,i balls of color i exist in the urn. This quality is
called the tenability of the urn. To ensure that an urn with a negative coefficient ai,i
is tenable, it is necessary and sufficient to have the following arithmetical condition
(this can be easily proved by induction on n). Fix an initial composition (α1, . . . , αd),
meaning that there are αj balls of colour j at time zero in the urn, then the tenability
condition can be written as

− ai,i divides αi, a1,i, . . . , ad,i. (1)

Moreover, in the present paper, the urn is assumed to be balanced, which means that
the total number of balls added at each step is a constant: there exists an integer S

such that, for any i in {1, . . . , d},
d∑
j=1

ai,j = S.

Let us emphasize that “drawing a ball at random” means choosing uniformly among
the balls contained in the urn. That is why this model is related to many situations
in mathematics, algorithmics or theoretical physics where a uniform choice among
objects determines the evolution of a process. See Johnson and Kotz’s book [19],
Mahmoud’s book [25] or Flajolet et al. [15] for many examples. For a general
probabilistic treatment of Pólya urns, see [29], Janson [18] or Mailler [26].

In Yao’s paper [30], the focus is on the average number of nodes in the B-tree.
Nevertheless, the main ideas are already there, namely the dynamics transforming
a tree of size n into a tree of size n + 1, which is the same dynamics as in a Pólya
urn process. The recent progresses in Pólya urn processes and their asymptotic
behaviour ([29, 12, 11], Janson [18], Mailler [26]) lead to a more complete landscape
for the B-trees. Our aim in this article is to present in a hopefully concise form a
collection of results about the asymptotic behaviour of the fringe nodes in a B-tree,
namely their typical behaviour and the fluctuations around it. Our main interest is
focused on these fluctuations, which happen to have a phase transition: for m ≤ 59,
the fluctuations are of order

√
n and have a Gaussian limit in distribution. But for

m ≥ 60, the fluctuations are of order nσ, where σ is larger than 1/2 and increases
to 1 when m tends to infinity. Moreover, an oscillating and significative phenomenon
occurs in the fluctuation term. After scaling, the fluctuations strongly converge
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(meaning almost surely) to a random limit, here called W . The random variable W
is C-valued and does not seem to follow any classical law.

The paper is organized as follows. In Section 2 are presented two classical algo-
rithms allowing to construct a B-tree. In that section is also precised how the
insertion dynamics is that of a suitable Pólya urn. In Section 3 are introduced the
random vectors which describe the fringe of a B-tree. In Section 4 is established the
phase transition, and we get the precise asymptotic behaviour of the fringe nodes,
in Corollary 1 of Theorem 2. For m ≥ 60, the fluctuations around the drift are
expressed via a random variable W , which is studied in the last sections. Thanks
to an embedding into continuous time (Section 5), a multitype branching process
is put forward. Properties of the continuous-time limit process can be translated
to the discrete-time process, via an explicit connection. Several properties of W
are proved in Section 6: W admits a density on the whole complex plane; it has
exponential moments; it is the unique solution of a certain “smoothing equation”
in a convenient probability distribution space. Finally, in Section 7, a few pictures
provide a synthetic and concrete illustration of the different kinds of convergence,
depending on whether m ≤ 59 or m ≥ 60.

2 B-tree algorithms

2.1 Description of a B-tree

For a positive integer m ≥ 2, a B-tree with parameter m is a search2 tree, where the
keys are stored into the internal nodes and the leaves3 represent insertion possibilities
(we call them gaps), they do not contain any key; furthermore all the leaves are at
the same depth. A fringe node is an internal node whose only descendants are
leaves. In the literature, these fringe nodes are sometimes called final internal nodes
or leaf-nodes, or internal leaves. We try to be non-ambiguous in the following, and
use the terms fringe nodes and fringe node process. In the figures below, internal
nodes are represented by ellipses and leaves by squares.
As is the case for the leaves, the fringe nodes of a B-tree are at the same depth.
Moreover, each internal node (fringe or otherwise) has a capacity; the root contains
between 1 and C(m) keys, and the other internal nodes between c(m) and C(m)
keys. When a node contains C(m) keys, we say that the node is saturated.

The minimal – c(m) – and maximal – C(m) – values depend both on the parameter
m and on the precise definition of the B-tree, which is itself closely related to the
exact insertion algorithm, of which we present two versions below. Let us just state
that c(m) = m− 1 and C(m) = 2m− 1 for the first algorithm, and c(m) = m and
C(m) = 2m for the second one. In both cases we want to insert a new key into

2A search tree is a tree where internal nodes contain sorted keys and where a node containing
k keys x1, . . . , xk defines k + 1 intervals such that, for j = 1, . . . , k + 1, the keys in the j-th subtree
belong to the j-th interval.

3The leaves, sometimes called external nodes, are the nodes without any descendant.
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a tree of size n, i.e. having already n keys in its internal nodes, and consequently
n+ 1 leaves, or insertion possibilities.

• •

• • • • • •

Figure 1: An example of B-tree of size 8. Here m = 2, nodes contain between 1
and 3 keys. There are 3 fringe nodes and 9 leaves. One fringe node is saturated.

2.2 The prudent algorithm

In what we call here the prudent algorithm for insertion into a B-tree with parameter
m, the nodes contain between m − 1 and 2m − 1 keys. An insertion of a new key
concerns a given leaf, so that a branch (the nodes between the root and this leaf) is
determined for this insertion. The algorithm proceeds by going down from the root
to the leaf, along this branch. We begin by checking the root: if it is saturated, it is
split, a new root is created with a single key which is the median of the keys of the
old root (remember that it has an odd number of keys, hence the median is defined
without any ambiguity) and two sons, and the height of the tree increases by 1. If
the root is not saturated, we do not modify it. We then proceed along the branch
to the insertion gap. When we meet a (non-root) saturated node, the median key
of that node moves to the parent node (which is not saturated – if it initially was,
we have already taken care of it) and the saturated node is split. Then, when we
finally arrive at a fringe node, we split it when necessary, and the insertion of the
new key always takes place into a non-saturated fringe node: the saturated nodes
are dealt with before we find the node in which the insertion of the new key will
take place. This algorithm, which can be presented both recursively and iteratively
(there being only a descent from the root to a leaf), is found, e.g., in the book of
Cormen et al [13]. If we consider the fringe nodes, insertion on a saturated node
(with 2m− 1 keys) gives rise to 2 new fringe nodes with respectively m and m− 1
keys. See Figure 2.

2.3 The optimistic algorithm

In what we call here the optimistic algorithm, for insertion into a B-tree with param-
eter m− 1, the nodes contain between m− 1 and 2m− 2 keys. Here the saturated
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• •

• • • • • •

• • •

• • • • • •

Figure 2: An example of insertion in a B-tree, for the prudent algorithm. Here
m = 2, nodes contain between 1 and 3 keys. The middle key in red moves to the
parent node.

nodes are dealt with after we have found the place for insertion. An insertion of
a new key concerns a given leaf. If the corresponding fringe node is not saturated,
the insertion occurs in this node; if it is saturated, the algorithm has to create a
non-saturated node into which we can insert the new key. It needs to find what
would be the place of the new key among the (already sorted) 2m − 2 keys; the
middle key among these 2m− 2 + 1 = 2m− 1 keys moves to the parent node, and
the saturated node is split into 2 new fringe nodes with m − 1 keys. If the parent
node is saturated, a key is pushed up into the grandparent node, etc... all the way
up to the root if necessary; if the root is saturated, it is split as well and the height
of the tree increases by 1. This algorithm proceeds by going down from the root to
the gap of insertion, and then up to (some node on) the branch from that leaf to the
root, and is possibly best understood recursively. Figure 3 illustrates an insertion
on a saturated node for a B-tree with parameter m = 3.

• •

• • • • • • • • •

• • •

• • • • • • • • •

Figure 3: An example of insertion in a B-tree, for the optimistic algorithm. Here
m = 3, nodes contain between 2 and 4 keys. The middle key in red is determined
among the 4 keys of the saturated node and the new key, and moves to the parent
node.
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2.4 Insertion as the evolution of a Pólya urn

For both the prudent and the optimistic algorithms, let us define different types of
fringe nodes: we say that a fringe node is of type k, when it contains m+ k− 2 keys
and has thus m + k − 1 gaps. For the prudent algorithm, k varies between 1 and
m+ 1; for the optimistic algorithm, k varies between 1 and m .

We analyse the fringe of the tree through the so-called composition vector Ln, which
counts the number of fringe nodes of each type in a B-tree of parameter m, at time n,
i.e., assuming that we start from an empty tree and add the keys one by one, when
the tree contains n keys. Thus, L

(k)
n , the k-th coordinate of Ln, is the number of

fringe nodes of type k. For the prudent algorithm, Ln is a vector of dimension m+1,
whereas it is a vector of dimension m for the optimistic algorithm .

For both algorithms, we define Gn as the composition vector of gaps at time n. We
say that a gap is of type k, when it is attached to a fringe node of type k. Thus
G

(k)
n , the k-th coordinate of Gn, is the number of gaps of type k. In other words:

(m+ k − 1)L(k)
n = G(k)

n . (2)

For both algorithms, the process (Gn)n∈N is a Pólya urn process, as defined in
the Introduction, where the balls are the gaps and the colors are the different types.
Indeed, when the keys are randomly chosen under the so-called random permutation
model, meaning that the keys are independently identically distributed (i.i.d.), then
the insertion of a new key in a B-tree of size n occurs uniformly on any of the n+ 1
gaps of the tree.

• In the prudent algorithm, the number of keys in a fringe node ranges from m− 1
to 2m − 1, there are m + 1 types, and the vector Ln is of dimension m + 1. The
replacement matrix of the gap process is of dimension m+ 1 and equal to4

rm =


−m (m+ 1)

−(m+ 1) (m+ 2)
. . . . . .

. . . 2m
m (m+ 1) −2m

 .

Figure 4 illustrates the same insertion as in Figure 2, taking into account the different
types (colors) of the fringe nodes.

• In the optimistic algorithm, the number of keys in a fringe node ranges from m−1
to 2m−2, there are m types, and the vector Ln is of dimension m. The replacement

4An empty entry stands for a zero in all the matrices of this article.
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• •

• • • • • •

• • •

• • • • • •

Figure 4: An example of insertion in a B-tree, for the prudent algorithm. Here
m = 2, nodes contain between 1 and 3 keys, there are 3 colors, white, pink and red.

matrix of the gap process is of dimension m and equal to

Rm =


−m m+ 1

−(m+ 1) m+ 2
. . .

−(2m− 2) 2m− 1
2m −(2m− 1)

 .

Figure 5 illustrates the same insertion as in Figure 3, taking into account the different
types (colors) of the fringe nodes.

• •

• • • • • • • • •

• • •

• • • • • • • • •

Figure 5: An example of insertion in a B-tree, for the optimistic algorithm. Here
m = 3, nodes contain between 2 and 4 keys, there are 3 colors, white, pink and red.

Observe that both replacement matrices rm and Rm are balanced (any row sums
to 1), which is an immediate consequence of the dynamics, since one key (one ball)
is added at each unit of time.

All the results in this paper hold for both algorithms, including the phase transition
depending on whether m ≤ 59 or m ≥ 60. However, the proofs and results for the
optimistic algorithm being somewhat simpler than those for the prudent algorithm,
we choose to present them and to leave the other case to the reader: from now on,

we consider a B-tree constructed by the optimistic algorithm.
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3 Gaps of a B-tree as a Pólya urn

Let us remind from Section 2 that a fringe node of a B-tree contains from m− 1 to
2m − 2 keys and from m to 2m − 1 gaps. For any k ∈ {1, . . . ,m}, a fringe node
that contains m + k − 2 keys is called of type k. We are interested in the fringe
node composition vector Ln of a B-tree at time n, whose k-th coordinate counts the
number of fringe nodes of type k.

Notation
Let (ek)1≤k≤m be the canonical basis of Rm. Denote by w1, . . . , wm the vectors
defined by {

wk = −ek + ek+1, 1 ≤ k ≤ m− 1
wm = 2e1 − em.

(3)

The wk’s are the increment vectors of the fringe node dynamics: when a key is
inserted in a fringe node of type k ∈ {1, . . . ,m− 1}, the fringe node is replaced by
a fringe node of type k + 1 (addition of vector wk) and when a key is inserted in
a fringe node of type m, the fringe node is replaced by two fringe nodes of type 1
(addition of vector wm). When the keys are randomly drawn under the permutation
model, the insertion is uniform on the gaps and the fringe node composition process
of a B-tree is modelized by the Rm-valued Markov chain (Ln)n∈N defined as follows
by its transition probabilities.

Definition of the (discrete-time) fringe node process
For any k ∈ {1, . . . ,m},

P
(
Ln+1 = Ln + wk

∣∣∣Ln) =
(m+ k − 1)〈Ln, ek〉

Kn

(4)

where the scalar product 〈Ln, ek〉 = L
(k)
n is the k-th coordinate of Ln and where

Kn denotes the total number of gaps at time n. Of course, when the process starts
initially with N0 keys at time 0, then Kn = 1 +N0 + n. Note that, considering the
B-tree, the number of gaps in a fringe node of type k is m+ k− 1 whereas the total
number of gaps in the tree at time n is exactly Kn so that Formulae (4) completely
define a Markov process; it reflects the uniform insertions of the keys in the gaps.

Alternatively, one can consider the gap process. A gap is called of type k when
it is contained in a fringe node of type k. Note once more that a fringe node of
type k contains m + k − 1 gaps. Expressed in terms of gaps, the dynamics of key
insertion in the B-tree is the following: when the key is inserted in a gap of type
k ∈ {1, . . . ,m − 1}, then m + k − 1 gaps of type k disappear and are replaced by
m+ k gaps of type k + 1; when the key is inserted in a gap of type m, then 2m− 1
gaps of type m disappear and are replaced by 2m gaps of type 1. Moreover, under
the random permutation model, the gaps are drawn uniformly. In other words, the
gap composition process of a B-tree is modelized by the following m-color Pólya
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urn process (Gn)n∈N, having Rm as replacement matrix and (m, 0, . . . , 0) as initial
composition.

Definition of the (discrete-time) gap process
Denote by (Gn)n∈N the m-color Pólya urn process defined by the m-dimensional
replacement matrix

Rm =


−m m+ 1

−(m+ 1) m+ 2
. . .

−(2m− 2) 2m− 1
2m −(2m− 1)

 .

Its balance, namely its common row sum, equals 1. Note that the diagonal entries
are negative. Nevertheless, the urn is tenable because, in any column, all entries are
multiple of the diagonal coefficient: when a ball of color 2 is drawn, m+1 extra balls
must be withdrawn from the urn which is always possible because balls of type 2
are put m+ 1 by m+ 1 in the urn as can be seen on Rm’s second column. The same
phenomenon occurs for any color. Of course, these negative diagonal entries imply
that one must necessarily take an initial composition that satisfies such divisibility
conditions as well: for any k ∈ {1, . . . ,m}, the initial number of balls of type k
satisfies

m+ k − 1 divides 〈L0, ek〉.
The symbol 〈., .〉 denotes here the standard scalar product on Rm. Thus, the condi-
tion (1) is fulfilled.

Both Markov processes (Ln)n and (Gn)n are related by Relation (6), stated hereun-
der. Let P be the m-dimensional diagonal invertible matrix

P = Diag (m,m+ 1, . . . , 2m− 1) . (5)

When V ∈ Nm\{0}, denote by
(
LVn
)
n≥0 the fringe node process starting with L0 = V

and by
(
GV
n

)
n≥0 the gap process starting from G0 = V . Then, for any V ∈ Nm\{0},

one has5 immediatly from (2)(
GPV
n

)
n∈N

L
=
(
PLVn

)
n∈N . (6)

In particular, denoting by |V | the sum of V ’s coordinates, the total number of gaps
in the B-tree at time n is

Kn = n+ |PV | =
m∑
k=1

(m+ k − 1)〈LVn , ek〉 =
m∑
k=1

〈GPV
n , ek〉.

In the following, when no confusion is possible, we lighten the notation GPV
n into

Gn, and LVn into Ln, like in Theorems 1 and 2 below.

5 When no confusion is possible, we denote by PV the product of the square matrix P by the
vector V ∈ Rm instead of the correct form P tV .
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4 Phase transition: small and large B-trees

With regard to the asymptotics of their composition vector, Pólya urns are subject
to a well known phase transition. See the above references on Pólya urns for a
general treatment. Let us translate the phenomenon for our B-urns, looking at the
spectral properties of the replacement matrix.

4.1 Spectral decomposition of the ambient space

In this section, we state notations relative to the spectral decomposition of the ma-
trix Rm. These notations are used all along the paper. The (unitary) characteristic
polynomial of Rm turns out to be

χm(X) =
2m−1∏
k=m

(X + k)− (2m)!

m!
. (7)

Its complex roots are all simple, the one having the largest real part one being 1.
Furthermore, two distinct eigenvalues that have the same real part are conjugated.
We denote by

λ2 = σ2 + iτ2 (8)

the eigenvalue of Rm having the second largest real part σ2 and a positive imaginary
part τ2. We adopt also the following notations:

Hm+1(X) =
m∑
k=1

1

X + k

v(λ) =
1

(m+ λ)Hm+1(m+ λ− 1)
×

(
1,

m+ 1

m+ 1 + λ
,

(m+ 1)(m+ 2)

(m+ 1 + λ)(m+ 2 + λ)
, . . . ,

(m+ 1) . . . (2m− 1)

(m+ 1 + λ) . . . (2m− 1 + λ)

)

〈v(λ), ek〉 =
1

(m+ λ)Hm+1(m+ λ− 1)

k−1∏
j=1

m+ j

m+ j + λ

u(λ) (x1, . . . , xm) =
m∑
k=1

(
k−2∏
j=0

λ+m+ j

1 +m+ j

)
xk

= x1 +
λ+m

1 +m
x2 +

(λ+m)(λ+m+ 1)

(1 +m)(2 +m)
x3 + · · ·

+
(λ+m) . . . (λ+ 2m− 2)

(1 +m) . . . (2m− 1)
xm.

(9)
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When λ is an eigenvalue of Rm, the vector v(λ) is an eigenvector of tRm associated
with λ. The linear form u(λ) is an eigenform of tRm associated with λ, which
means that for any (column) vector V , u(λ)

(
tRmV

)
= λu(λ)(V ). Moreover, if λ

and µ are eigenvalues of Rm, then u(λ) [v(µ)] = δλ,µ (Kronecker). In other words,
(v(λ))λ∈Sp(Rm) and (u(λ))λ∈Sp(Rm) are dual basis of respectively eigenvectors and

eigenforms of tRm.
In the sequel, for more simplicity, we denote

v1 = v(1) =
1

Hm+1(m)

(
1

m+ 1
,

1

m+ 2
, . . . ,

1

2m

)

u1 (x1, . . . , xm) = u(1) (x1, . . . , xm) =
m∑
k=1

xk

v2 = v(λ2) and u2 = u(λ2).

(10)

The complex vector space Cm admits the decomposition as direct sum of tRm-stable
lines

Cm =
⊕

λ∈Sp(Rm)

Cv(λ)

and the corresponding projection on any line Cv(λ) is u(λ)v(λ). In the real field,
we use the decomposition

Rm = Rv1 ⊕ V1 (11)

where V1 is the only subspace which is simultaneously tRm-stable and supplementary
to Rv1. It is generated by the vectors respectively constituted by the real parts and
the imaginary parts of the coordinates of the complex vectors v(λ), λ ∈ Sp (Rm)\{1}.
In the same vein, we denote by V2 the only tRm-stable subspace of Rm that satisfies

Rm = Rv1 ⊕ R< (v2)⊕ R= (v2)⊕ V2.

4.2 Phase transition for gaps and fringe nodes

The phase transition on urns is expressed on the gap process (Gn)n in the following
result. Note the two very different convergence modes: a weak one for small phases vs
a strong one with periodic phenomena for large phases. See simulations in Section 7
for an illustration.

Theorem 1 Let m ≥ 2. Let V ∈ Nm be a non zero vector and let (Gn)n≥0 be the
(discrete-time) gap process starting with the initial condition G0 = PV . Then, with
notations (9) and (10),

(i) (Small phases)

if m ≤ 59, as n tends to infinity,
Gn − nv1√

n
converges in distribution to a centered

Gaussian vector;
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(ii) (Large phases)
if m ≥ 60, as n tends to infinity,

Gn = nv1 + 2<
(
nλ2WDTv2

)
+ o (nσ2) , (12)

almost surely and in any Lp, p ≥ 1, where WDT is a complex-valued random variable

with expectation
Γ (|PV |)

Γ (|PV |+ λ2)
u2(PV ) ( Γ denotes Euler Gamma function).

Proof.
These results come from the general theory of balanced Pólya urn processes. See
Janson [18] or [29]. The numerical values of σ2 leading to the phase transition are
given in the Appendix. ut

Remark 1 In Theorem 1(ii), for any p ∈]0, 1[, the asymptotics is also valid in the
(not locally convex) complete metric space Lp defined by the usual quasi-norm. This
is true for Theorem 2, Corollary 1, Theorem 3, Theorem 4 and Remark 2 as well.

When V is a complex vector, <(V ) denotes the vector made of real parts of V ’s
coordinates. The random variable WDT , which is more deeply studied below, ap-
pears as a martingale limit in the field of urn theory. It can be also described as
the almost sure limit of Gn after normalisation and projection along the principal
direction defined by v2:

WDT = lim
n→∞

1

nλ2
u2 (Gn) .

Of course, the phase transition and the asymptotics can be straightforwardly trans-
lated on the fringe node process (Ln)n via the diagonal matrix P defined in (5). The
random variable WDT that appears for large phases in Theorem 2 has the same law
as the one of the gap process in Theorem 1.

Theorem 2 Let m ≥ 2. Let V ∈ Nm be a non zero vector and let (Ln)n≥0 be the
(discrete-time) fringe node process starting with the initial condition L0 = V . Then,
with notations (9), (10) and (5),

(i) (Small phases)

if m ≤ 59, as n tends to infinity,
Ln − nP−1v1√

n
converges in distribution to a centered

Gaussian vector;

(ii) (Large phases)
if m ≥ 60, as n tends to infinity,

Ln = nP−1v1 + 2<
(
nλ2WDTP−1v2

)
+ o (nσ2) , (13)

almost surely and in any Lp, p ≥ 1, where WDT is a complex-valued random variable
which has the same distribution as in the variable named the same way in Theorem 1.
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Geometrically speaking, expansion (12) (and expansion (13) as well) can be under-
stood as follows. Notice that an analogous explanation holds for expansions (17)
and (18) in Theorem 3 and Theorem 4 respectively.

<(v2)

=(v2)

v1

Let us denote by ϕ any argument of the complex
number WDT . T he trajectory of the random vec-
tor Gn, projected in the 3-dimensional real vector
space spanned by the vectors (<(v2),=(v2), v1) is
almost surely asymptotic to the (random) spiral

xn = 2|W |nσ2 cos(τ2 log n+ ϕ),
yn = −2|W |nσ2 sin(τ2 log n+ ϕ),
zn = n,

drawn on the (random) revolution surface

4|W |2z2σ2 = x2 + y2,

when n tends to infinity.

As is well known in the field of Pólya urn processes, the phase transition is due to
the number σ2. When σ2 < 1/2, the Pólya urn is small and admits a weak Gaussian
asymptotics. On the contrary, when σ2 > 1/2, the urn is large and has a strong
and oscillating (λ2 is nonreal) asymptotic behaviour. Considering the replacement
matrix Rm, it turns out that σ2 is an increasing function of m and that:
• when m = 59, λ2 = (0.49534...) + (9.10305...)i
while
• when m = 60, λ2 = (0.50378...) + (9.10270...)i.
These numerical values have been computed by a Newton approximation algorithm,
which can be found in the Appendix. The monotonicity of σ2 as a function of m
(it increases to 1 when m tends to infinity) has been evocated by Hennequin [17] in
a figure. Qualitatively, let us emphasize the fact that for large values of m (which
is the actual use in computer science, since m amounts to several hundreds), the
fluctuation term with WDT is highly significant.

We deduce from these theorems the asymptotic behaviour of the composition vector
of the fringe nodes of different types in a B-tree, which is a particular case of Theo-
rem 2 with the initial condition V = (1, 0, . . . , 0). We stated the theorems above for
arbitrary initial conditions because of the further study of the limit law WDT that
requires these wider statements.

Corollary 1 Let m ≥ 2. Let Ln be the composition vector at time n of the fringe
nodes of different types in a B-tree with minimum degree m. Then, as n goes of to
infinity, with notations (5) and (10),
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(i) when m ≤ 59,
Ln − nP−1v1√

n
converges in distribution to a centered gaussian

vector;

(ii) when m ≥ 60, Ln = nP−1v1 + 2<
(
nλ2WB−tree

m P−1v2
)

+ o (nσ2), almost surely
and in any Lp, p ≥ 1, where WB−tree

m is a complex-valued random variable with

expectation
m!

Γ (m+ λ2)
.

5 Embeddings into continuous time

Going further and obtaining significant properties of the random limit WDT is not so
easy. As can be seen in this section, the classical method of embedding in continuous
time turns out to be very fruitful: this idea of embedding discrete urn models in
continuous-time branching processes goes back at least to Athreya and Karlin [1].
A description is given in Athreya and Ney’s book [2, Section 9]. The method has
been recently revisited and developed by Janson [18], it is the core of recent results
on Pólya urns in [12, 11].

5.1 Definition of the continuous-time fringe node process

Denote by (L(t))t∈R≥0
the Nm \ {0}-valued continuous time Markov process having

G as infinitesimal generator, where G is defined, for any function f : Nm \ {0} → V
(V is any real or complex vector space) and for any nonzero X = (x1, . . . , xm) ∈ Nm,
by

G(f)(X) =
m∑
k=1

(m+ k − 1)xk

[
f (X + wk)− f (X)

]
where the increment vectors wk have already be defined by (3).

This process is a multitype branching process, embedding of the Markov chain (Ln)n
into continuous time, as classically done (see for example Bertoin [7]). One can
think of it the following way. At each (real) time t ≥ 0, one gets particles of m
different types named 1, 2, . . . ,m. Each particle is equipped with a clock that rings
at random times. The clock of any particle of type k is exponentially distributed,
with parameter m+ k − 1 and all the clocks are independent. The dynamics of the
process is the same as in discrete time: for any k ∈ {1, . . . ,m− 1}, when the clock
of a particle of type k rings, the particle disappears and is replaced by a particle of
type k+ 1; when the clock of a particle of type m rings, the particle disappears and
is replaced by two particles of type 1.

Having the same dynamics, the distributions of the processes (Ln)n∈N and (L(t))t∈R≥0

are as usual related by the finite-time connection

(Ln)n∈N
L
=
(
L
(
τ(n)
))
n∈N (14)
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where τ(n) denotes the n-th splitting time (the n-th ringing time). This relation
allows us to transfer results on one process to the other. In particular, the results
below strongly rely on the fact that (e−(

tRm)tL(t))t∈R≥0
is a vector-valued martingale

(see Janson [18] or Athreya and Ney [2] for this).

5.2 Definition of the continuous-time gap process

Define the vector-valued continuous-time Markov process (G(t))t∈R≥0
as being the

embedding into continuous time of the discrete-time urn process (Gn)n∈N. It takes
its values in the set of vectors of the form PV where V ∈ Nm \ {0}. With notations
as above, its infinitesimal generator is given by

H(f)(X) =
m∑
k=1

xk

[
f (X + Pwk)− f (X)

]
,

the increment vectors Pwk being the rows of the urn replacement matrix Rm.

One can think of this process the following way. Take an urn that contains clocks of
m different colors named 1, . . . ,m. Each clock rings at a random time, exponentially
distributed with parameter 1 and all the clocks are independent. As soon as a clock
rings, the following replacement mechanism occurs: if the ringing clock has color
k ∈ {1, . . . ,m−1}, then it disappears together with m+k−2 other clocks of color k
and m+k clocks of color k+1 arise in the urn; if the ringing clock has color m, then
it disappears together with 2m− 2 other clocks of color k and 2m clocks of color 1
arise in the urn. The fact that the ringing times are exponentially distributed allows
to think as if all clocks were restarted as soon as one of them rings. Note that the
fact that many clocks disappear at the same time prevents (G(t))t∈R≥0

from being

a multitype branching process.

As in the preceding case, the processes (Gn)n∈N and (G(t))t∈R≥0
have the same

dynamics, so that

(Gn)n∈N
L
=
(
G
(
τ ′(n)
))
n∈N

, (15)

where τ ′(n) denotes the n-th ringing time.

When V ∈ Nm \ {0}, denote by
(
L(t)V

)
t≥0 the fringe node process starting with

L(0) = V and by
(
G(t)V

)
t≥0 the gap process starting from G(0) = V . Then, as in

the discrete-time case in (6), for any V ∈ Nm \ {0},(
G(t)PV

)
t≥0

L
=
(
PL(t)V

)
t≥0 , (16)

where P is the diagonal matrix defined in (5).
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5.3 Asymptotics of both continuous-time processes

The asymptotics of the continuous-time processes admit the same kind of phase
transition as in discrete time. We state this asymptotics for both continuous-time
processes in Theorems 4 and 3. Since G is the image of L by P , any of these
theorem implies the other one. Nevertheless, as explained below, we prove both of
them together using results on branching processes and results on Pólya urns.

Theorem 3 Let m ≥ 2. Let V ∈ Nm be a non zero vector and let (G(t))t∈R≥0
be

the continous-time gap process that satisfies G(0) = PV . Then, with notations (9),

(i) (Small phases)
when m ≤ 59, as t tends to infinity, e−tG(t) converges almost surely and in any
Lp, p ≥ 1, to ξv1 where ξ is a positive random variable which is Gamma-distributed
with parameter |PV |. Furthermore, if one writes G(t) = G1(t) + G′1(t) where the
random vector G1(t) is proportional to v1 and where G′1(t) is V1-valued (see(11)),
then e−tG1(t) converges almost surely and in any Lp to ξv1 while e−t/2G′1(t) converges
in distribution to

√
ξN where N is a centered V1-valued gaussian vector independant

of ξ.

(ii) (Large phases)
when m ≥ 60, as t tends to infinity,

G(t) = etξv1 (1 + o(1)) + 2<
(
eλ2tWCTv2

)
(1 + o(1)) + o

(
eσ2t
)

(17)

almost surely and in any Lp, p ≥ 1, where WCT is a complex-valued random variable
with expectation u2(PV ) and ξ a positive random variable that is Gamma distributed
with parameter |PV |. The almost sure remainder o (eσt) is a V2-valued random
vector.

Theorem 4 Let m ≥ 2. Let V ∈ Nm be a non zero vector and let (L(t))t∈R≥0
be the

continous-time fringe node process that satisfies L(0) = V . Then, with notations (9)
and (5),

(i) (Small phases)
when m ≤ 59, as t tends to infinity, e−tL(t) converges almost surely and in any Lp,
p ≥ 1, to ξP−1v1 where ξ is a positive random variable which is Gamma-distributed
with parameter |PV |. Furthermore, if one writes L(t) = L1(t)+L′1(t) where the ran-
dom vector L1(t) is proportional to P−1v1 and where L′1(t) is P−1V1-valued (see(11)),
then e−tL1(t) converges almost surely and in any Lp to ξP−1v1 while e−t/2L′1(t) con-
verges in distribution to

√
ξN ′ where N ′ is a centered P−1V1-valued gaussian vector

independant of ξ.

(ii) (Large phases)
when m ≥ 60, as t tends to infinity,

L(t) = etξP−1v1 (1 + o(1)) + 2<
(
eλ2tWCTP−1v2

)
(1 + o(1)) + o

(
eσ2t
)

(18)
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almost surely and in any Lp, p ≥ 1, where WCT is a complex-valued random variable
with expectation u2(PV ) and ξ a positive random variable that is Gamma distributed
with parameter |PV |. The almost sure remainder o (eσt) is a P−1V2-valued random
vector.

Note that the random variables ξ and WCT that appear in both theorems have been
denoted the same way because their distributions are the same in both cases. This
comes immediately from (16).

Proof of Theorems 3 and 4.
Despite the fact that similar results can be found in Janson [18] and Mailler [26], the
particular case of our processes is not properly contained in their statement. The
proofs are essentially made the same way as in both papers [10] and [9]. We give
hereunder the general scheme of the argumentation. The first tool comes from the
fact that the normalised projection (e−tu1(G(t)))t≥0 is always a convergent positive
martingale. The random variable ξ is its limit.

(i) Small phases. The process (L(t))t∈R≥0
is a multitype branching process so that (i)

in Theorem 4 is covered by [2] and [18]. Relation (16) thus implies (i) in Theorem 3.

(ii) Large phases. As for the first projection,
(
e−λ2tu2(G(t))

)
t≥0 is a martingale,

which is convergent if, and only if σ2 > 1/2, i.e. when m ≥ 60. The complex-
valued random variable WCT is its limit. The oscillating term <

(
eλ2tWCTP−1v2

)
in Theorem 4 is a consequence of [2] and [18]’s results. In order to establish the
almost sure remainders o (eσ2t), we use results on discrete-time Pólya urns shown
in [29]. The work is done on the gap process (G(t))t viewed as an embedded urn into
continuous time. For any t ≥ 0, decompose G(t) as the sum G(t) = G1(t) +G2(t) +
G`(t) +Gs(t) of its respective following projections on the described supplementary
subspaces:
• G1(t) is the projection on Rv1 as before;
• G2(t) is the projection on the real plane generated by the real part and the
imaginary part of v2;
• G`(t) is the projection on the subspace of Rm generated by the real and imaginary
parts of the eigenvectors v(λ) for all eigenvalues λ different from 1 and λ2 such that
< (λ) > 1/2 (large projections);
• finally, Gs(t) is the projection on the subspace of Rm generated by the real and
imaginary parts of the eigenvectors v(λ) for all eigenvalues λ such that < (λ) ≤ 1/2
(small projections).
As seen before, e−tG1(t) converges to ξv1 almost surely and in Lp, p ≥ 1, by mar-
tingale techniques; this gives rise to the first term etξv1 in the asymptotics of G(t).
Since G2(t) = 2< [u2 (G2(t)) v2] and because of the convergence in Lp, p ≥ 1, of the
complex martingale

(
e−λ2tu2(G(t))

)
t≥0 mentioned above, one gets the second term

<
(
eλ2tWCTv2

)
of G(t)’s asymptotics. The remainder o (eσ2t) is obtained from G`

and Gs asymptotics. As for G2, if λ is an eigenvalue of Rm such that <(λ) > 1/2,
by martingale arguments, the complex projection of G(t) on any eigenline Cv(λ)
is equivalent to eλtWλ almost surely and in any Lp where Wλ is a complex-valued
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random variable. In particular, the whole projection G`(t) is o (eσ2t), almost surely
and in any Lp.
To make the proof complete, it remains to show thatGs(t) is o (eσ2t) as well. To prove
this fact, we use the technique detailed in [10] (Theorem 4.1 and Lemma 4.2). It
consists in considering the same projection for the discrete-time urn process (Gn)n, in
using the moment bounds proven in [29] for small projections of discrete-time Pólya
urns and in coming back to continuous time by Relation (15). By this means, one
shows after some probabilistic arguments that for any η > 0, the whole projection

Gs satisfies that e−(η+ 1
2)tGs(t) is bounded, almost surely and in Lp, p ≥ 1, implying

the expected result on G(t). The corresponding asymptotics of L(t) is obtained by
taking the image of G(t) by P−1. ut

Remark 2 For m ≥ 60, we deduce from these theorems the asymptotic behaviour of
the continuous-time fringe node process, denoted by (L(t))t, starting from the B-tree
initial condition V = (1, 0, . . . , 0):

L(t) = etξP−1v1 (1 + o(1)) + 2<
(
eλ2tWCTP−1v2

)
(1 + o(1)) + o

(
eσ2t
)

(19)

almost surely and in any Lp, p ≥ 1, whereWCT is a complex-valued random variable
with expectation m and ξ a positive random variable that is Gamma distributed with
parameter m. The almost sure remainder o (eσt) is a P−1V2-valued random vector.

For large phases, the finite time connections (15) or (14) lead to a relation be-
tween the random variables W in discrete and continuous times. This relation,
commonly named martingale connection will be stated and used below in the ar-
ticle. We indicate hereafter how one can get it. Take for instance Relation (15)
concerning the gap processes (Gn)n and (G(t))t starting with the same initial con-
dition G0 = G(0) = PV . Using Theorems 1 and 3, since τ(n) tends almost surely
to +∞ as n goes of to infinity, one gets successively ξ = limt→∞ e

−tu1 (G(t)) =
limn→∞ e

−τ(n)u1(Gn) = limn→∞ ne
−τ(n) on one hand. On the other hand, WCT =

limt→∞ e
−λ2tu2 (G(t)) = limn→∞ e

−λ2τ(n)u2(Gn) = limn→∞ [ne−τ(n) ]
λ2
[
n−λ2u2(Gn)

]
.

This entails the martingale connection

WCT L
= ξλ2WDT . (20)

We just recall here that the random variable ξ is Gamma-distributed with expecta-
tion |PV |.

6 Limit law of large B-trees

In this section appear the benefits of the embedding in continuous time. Indeed,
the branching property applied to the fringe node process (L(t))t, together with
the asymptotics proved in Theorem 4, allow us to see the limit WCT as a solution
of a distributional equation. This is detailed in Section 6.1. It is the starting
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point to deduce several properties of WCT : its distribution is the unique solution
of such an equation in a convenient space of probability distributions (Theorem 5
in Section 6.3); it admits exponential moments in a neighborhood of 0 (Theorem
6 in Section 6.4); up to a change of function, its Laplace transform is a solution
of the quite simple (but unsolvable!) differential equation y(m) = y2 (Theorem 7 in
Section 6.5); it admits a density relatively to Lebesgue measure on C and its support
is the whole complex plane (Theorem 8 in Section 6.6). Thanks to connection (20)
between WCT and WDT , corresponding results are true for WDT and consequently
for WB−tree

m .

6.1 Dislocation equations in continuous time

In this section, using the branching property of the continuous-time process (L(t))t,
we show that the complex-valued random variable WCT is solution of a very simple
distributional equation.
In order to simplify the notations, for any k ∈ {1, . . . ,m}, denote by Wk the limit
random variable WCT (or its distribution) of the continuous-time fringe node pro-
cess (L(t)ek)t that starts with one particle of type k, which means that its initial
composition L(0) is the k-th vector ek of Rm canonical basis. Denote also by τk
the first splitting time of the process (L(t)ek)t; its is exponentially distributed, with
parameter m+ k − 1.
Because of the branching property of the process (L(t))t, for any time t ≥ τ1, the
processes (L(t)e1)t≥0 and (L(t)e2)t≥0 are related by the distributional equation

L(t)e1
L
= L(t− τ1)e2 .

In the asymptotic form given by Theorem 4, consider the second order term on both
sides of the equality, which consists in projecting, normalizing and letting t tend to
infinity. This leads to the distributional equality

W1 = e−λ2τ1W2,

the random variables W2 and τ1 being independent. Doing the same for all values
of k ∈ {1, . . . ,m} leads to the distributional system:

W1
L
= e−λ2τ1W2

W2
L
= e−λ2τ2W3
...

Wm−1
L
= e−λ2τm−1Wm

Wm
L
= e−λ2τm

(
W

(1)
1 +W

(2)
1

)
(21)

where
• for any k ∈ {1, . . . ,m−1}, the random variables τk and Wk+1 of the k-th equation’s
right-hand sides are independent;
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• in the right-hand side of the last equation, the random variables W
(1)
1 and W

(2)
1

are independent copies of W1, both being independent of τm as well.
We recall that for any k ∈ {1, . . . ,m}, the random variable τk is exponentially
distributed, with parameter m+k−1 (see Section 5). In particular, W1 is a solution
of the following distributional equation, sometimes called fixed point equation or
smoothing equation in some branching processes contexts (see Liu [22] or Biggins
and Kyprianou [8]).

W1
L
= Bλ2

(
W

(1)
1 +W

(2)
1

)
(22)

where
• the random variables W

(1)
1 and W

(2)
1 are independent copies of W1;

• B is a random variable, independent of W
(1)
1 and W

(2)
1 , Beta distributed with

parameters (m,m) which means that it admits tm−1(1 − t)m−111[0,1](t) as a density
(11A denotes the indicatrix function of the set A).
The distribution of B is computed the following way. By immediate computation
from System (21), one sees that B = e−(τ1+τ2+···+τm), the variables τk being mutually
independent. To recognize the Beta(m,m) law, one can make a direct computation
of its density or compute its moments (a Beta distribution is characterized by its
moments because its support is compact).

6.2 Smoothing equation in discrete time

In a general setting of m-color Pólya urns, including the case of negative entries on
the diagonal of the replacement matrix, Mailler [26] proves that WDT is a solution
of a distributional equation which turns to be in our case

W
L
= Bλ2

1 W
(1) +Bλ2

2 W
(2), (23)

where
• the random variables W (1) and W (2) are independent copies of W ;
• (B1, B2) is a random vector, independent of W (1) and W (2), Dirichlet distributed
with parameters (m,m), which means that B1 + B2 = 1 and that B1 and B2 are
Beta distributed with parameters (m,m).

Remark 3 One proof of this result in [26] uses the tree structure of the urn. Nev-
ertheless, we do not actually understand what kind of “divide-and-conquer” type
argument, applied to B-trees, could lead to this equation. Indeed, in other cousin
models, like m-ary search trees (see Fill and Kapur [14]), such a backward decompo-
sition leads to a finite time decomposition equation and passing to the limit, it gives
the distributional equation.

6.3 Contraction methods

The question of existence and unicity of solutions of equations like (22) or (23) is
classically solved using the Banach fixed point theorem. One point of view, frequent

21



in analysis of algorithms, consists in starting from a decomposition property of the
algorithm at finite time, deduce a distributional equation on a cost variable, and pass
to the limit to get a smoothing equation on the limit random variable. See Knape
and Neininger [20] for Pólya urns, and also the general paper by Neininger and
Rüschendorf [27] or their survey [28] for many examples of this so-called contraction
method. Another point of view (in this article) consists in taking advantage of the
dynamics of the algorithm and exhibiting a martingale limit, solution of a smoothing
equation. Thus, the existence is automatically achieved. In both points of view, to
get the unicity, the contraction property has to be established, in a convenient space
of probability distributions, classically equipped with a Wasserstein distance to get
a complete metric space of measures.
We do not prove here the theorem below, since it is done in a general frame by
Mailler [26]. The same kind of results can be found in Janson [18, proof of Th 3.9
(iii)] and in Knape and Neininger [20] even if the only case ai,i ≥ −1 is considered
there. See also [10, 9].

Theorem 5 When A is a complex number, let M2 (A) be the space of probability
distributions on C that have A as expectation and a finite second moment, endowed
with a complete metric space structure by the Wasserstein distance. Let λ ∈ C be
any root of the characteristic polynomial (7) such that <(λ) > 1

2
. Then,

(i) Each of the two equations

W
L
= Bλ

1W
(1) +Bλ

2W
(2)

where W (1) and W (2) are independent copies of W , and where (B1, B2) is
a random vector, independent of W (1) and W (2), Dirichlet distributed with
parameters (m,m), and

W
L
= Bλ

(
W (1) +W (2)

)
where W (1) and W (2) are independent copies of W , and where B is independent
of W (1) and W (2), Beta distributed with parameters (m,m),

have a unique solution in M2 (A).

(ii) For m ≥ 60, the variable WB−tree
m , defined in Corollary 1, is the unique solution

of (23) having
m!

Γ (m+ λ2)
as expectation and a finite second moment.

(iii) For m ≥ 60, the variable WCT , defined in (19), is the unique solution of (22)
having m as expectation and a finite second moment.

6.4 Cascades and exponential moments

Let λ ∈ C be any root of the characteristic polynomial (7) such that <(λ) > 1
2

and
let B be a Beta distribution with parameters (m,m). A simple computation leads
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to 2E
(
Bλ
)

= 1. This is coherent with equation

W
L
= Bλ

(
W (1) +W (2)

)
. (24)

Moreover, for any positive real s,

2E (Bs) =
(2m) . . . (m+ 1)

(2m− 1 + s) . . . (m+ s)
< 1⇐⇒ s > 1.

Consequently, when 2<(λ) > 1, one has

2E
(
|Bλ|2

)
< 1. (25)

Theorem 6 below states that any solution W of Equation (24) admits exponential
moments in a neighbourhood of 0, so that the moment exponential generating se-
ries of W defines an analytic function in a neighbourhood of the origin. Another
consequence is that the law of W is determined by its moments.
The proof relies on a Mandelbrot’s cascade here defined in a complex setting (see
Barral et al. [4] for complex Mandelbrot’s cascades).
To lighten the notations, denote for a while A := Bλ and let Au, u ∈ U be indepen-
dent copies of A, indexed by all finite sequences of 0 and 1:

u = u1 . . . un ∈ U :=
⋃
n≥1

{0, 1}n.

Let Y0 = m, Y1 = 2mA and for n ≥ 2,

Yn =
∑

u1...un−1∈{0,1}n−1

2mAAu1Au1u2 . . . Au1...un−1 .

By the branching property, and using 2EA = 1, it is easy to see that (Yn)n is a
martingale with expectation m. This martingale has been studied by many authors
in the real-valued random variable case, especially in the context of Mandelbrot’s
cascades, see for example Liu [24] and the references therein. It can be easily seen
that

Yn+1 = Bλ
(
Y (1)
n + Y (2)

n

)
(26)

where Y
(1)
n and Y

(2)
n are independent of each other and independent of Bλ and each

has the same distribution as Yn. Therefore for n ≥ 1, Yn is square-integrable and

VarYn+1 = 2E|Bλ|2 VarYn + (4E|Bλ|2 − 1)

where VarX = E (|X − EX|2) denotes the variance of X. Since 2E|Bλ|2 < 1, the
martingale (Yn)n is bounded in L2, so that the following result holds.

Lemma 1 Let λ ∈ C be any root of the characteristic polynomial (7) such that
<(λ) > 1

2
and let B be a Beta distribution with parameters (m,m). When n→ +∞,

Yn → Y∞ a.s. and in L2,
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where Y∞ is a (complex-valued) random variable with variance

Var(Y∞) =
4E|Bλ|2 − 1

1− 2E|Bλ|2
.

Notice that, passing to the limit in (26) gives a new proof of the existence of a
solution W of Eq. (24) with a given expectation and finite second moment whenever
<(λ) > 1/2. From Section 6.3, we have the uniqueness of solution of this equation
so that Theorem 6 below will be proved as soon as it holds for Y∞.

Lemma 2 There exist some constants C > 0 and ε > 0 such that for all t ∈ C with
|t| ≤ ε, we have

Ee〈t,Y∞〉 ≤ em<(t)+C|t|
2

. (27)

Proof. By Fatou lemma, it is sufficient to prove the existence of C > 0 and ε > 0
such that for all t ∈ C with |t| ≤ ε, and for every integer n,

Ee〈t,Yn〉 ≤ em<(t)+C|t|
2

. (28)

Denote ϕn(t) := Ee〈t,Yn〉 and notice that ϕn+1(t) = E
(
ϕ2
n(tBλ)

)
thanks to Equa-

tion (26), allowing to prove (28) by recursion on n ≥ 0. For n = 0,

ϕ0(t) := Ee〈t,Y0〉 = em<(t)

and by the recursion assumption,

ϕn+1(t) ≤ E
(
e2C|t|

2|Bλ|2+2m<(tBλ)
)

= em<(t)+C|t|
2

f(t1, t2)

where for any t ∈ C, written t = t1 + it2 with t1, t2 ∈ R,

f(t1, t2) = E
(
eC|t|

2(2|Bλ|2−1)+2m<(tBλ)−m<(t)
)
,

so that it is sufficient to prove that (0, 0) is a local maximum of f . Writing λ = σ+iτ ,
with σ, τ ∈ R,

f(t1, t2) = E exp
[
C(t21 + t22)(2B

2σ − 1) + 2mBσ(t1 cos(τ) + t2 sin(τ))−mt1
]
.

Remembering 2E
(
Bλ
)

= 1, which means 2E (Bσ cos(τ)) = 1 and E (Bσ sin(τ)) = 0,
we get that the first derivatives vanish at (0, 0) which is a critical point. Moreover,
the calculation of the second partial derivatives gives

∂2f

∂t1
(0, 0) = E

[
(2mBσ cos(τ)−m)2 + 2C

(
2B2σ − 1

)]
,

∂2f

∂t2
(0, 0) = E

[
(2mBσ sin(τ))2 + 2C

(
2B2σ − 1

)]
,

∂2f

∂t1∂t2
(0, 0) = E (2mBσ cos(τ)−m) (2mBσ sin(τ)) .

By (25), E (2B2σ − 1) < 0, so that the Hessian matrix at (0, 0) is definite negative
for C > 0 large enough which implies that (0, 0) is a local maximum of f . ut
The following theorem is a direct consequence of Lemma 2, like in [10].
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Theorem 6 Let λ ∈ C be a root of the characteristic polynomial (7) with <(λ) >
1/2 and let W be a solution of Eq. (24). There exist some constants C > 0 and
ε > 0 such that for all t ∈ C with |t| ≤ ε,

Ee〈t,W 〉 ≤ em<(t)+C|t|
2

and Ee|tW | ≤ 4em|t|+2C|t|2 . (29)

6.5 Laplace transform

Theorem 6 above concerning WCT and Theorem 7 (ii) in Mailler [26] (which estab-
lishes that the Laplace series of WDT has an infinite radius of convergence) answer
the question of the convergence of the Laplace series of WDT and WCT . Never-
theless, a natural investigation consists in searching more information about these
Laplace transforms coming from the smoothing equations.

Indeed, the dislocation equations (21) lead to a system of differential equations on
the Laplace transforms

∀k = 1, 2, . . . ,m, ϕk(z) := E
(
e<z,Wk>

)
, (30)

where we recall that Wk is the limit random variable WCT of the continuous-time
fringe node process (L(t)ek)t that starts with one particle of type k. Using the
independence between the splitting times τk (which are exponentially distributed,
with parameter m+ k − 1) and the Wk, for k = 1, 2, . . . ,m− 1,

ϕk(z) =

∫ +∞

0

ϕk+1

(
ze−λ2t

)
(m+ k − 1)e−(m+k−1)tdt,

and after a change of variable, and derivation, for k = 1, 2, . . . ,m− 1,

m+ k − 1

λ2
ϕk(z) + zϕ′k(z) = ϕk+1(z),

and for k = m,
2m− 1

λ2
ϕm(z) + zϕ′m(z) = ϕ2

1(z).

Thanks to a convenient change of function, a simple calculation gives the following
theorem about the Laplace transforms of the Wk, for k = 1, 2, . . . ,m.

Theorem 7 For k = 1, 2, . . . ,m, let ϕk be the Laplace transform of Wk defined in
(30), and let

ψk(z) :=
(
−λ2

)m+k−1 ϕk

(
z−λ2

)
zm+k−1 ,

(for any determination of the logarithm). Then the functions ψk satisfy the simple
differential system {

ψ′k = ψk+1, ∀k ∈ {1, . . . ,m− 1},
ψ′m = ψ2

1.

In particular, ψ1 is a solution of the differential equation

y(m) = y2.
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6.6 Density and support

Liu’s method has been developped in [23] and [24] for positive real-valued random
variables solution of smoothing equations of the same type as (22) or (23). Adapting
this method to C-valued random variables, Mailler [26] gets the support and the
existence of a density for the limit law of a d-color Pólya urn. The theorem below
is a particular case.

Theorem 8 Let m ≥ 2. Let V ∈ Nm be a non zero vector and let WDT and WCT be
the W -distributions of the respective discrete-time and continuous-time fringe node
processes having V as initial composition (see (ii) in Theorem 2 and Theorem 4).
Then

(i) the supports of WDT and WCT are both the whole complex plane C;

(ii) WDT and WCT are absolutely continuous relatively to Lebesgue’s measure on C;

(iii) as |t| → ∞, Eei〈t,WDT 〉 = O(|t|−a) for each a ∈
]
0,

m

<(λ2)

[
, and the same is

true for the Fourier transform of WCT as well.

6.7 Perspectives

Some open questions remain about WDT and WCT , let us say W :
- can the W distribution be expressed by means of usual distributions? Same ques-
tion for |W | and Arg(W )?
- how heavy are the tails of W?
- what is the order of magnitude of W ’s p-th moment as p tends to +∞?

7 Simulations

Let us here summarize and illustrate the asymptotic results concerning the fringe
of a random B-trees. We only show the behaviour of the gap process (Gn)n and
illustrate Theorem 1; nevertheless, the simulations would be analogous for the fringe
node process (Ln)n to illustrate Corollary 1.
In all the simulations below, sequences of 107 random keys have been inserted in a
B-tree for different value of the parameter m. Notice that in “real life” computer
science implementations, m is most of the time taken around 100 or more.

7.1 Simulations of Gn

Figures 6 and 7 represent the trajectories of three coordinates of the random vec-
tor Gn: for any given value m = 10, 30, 55, 65, 100 or 237 of the parameter, we
make one random drawing of a sequence of 107 keys and insert them in a B-tree.
On the pictures, the x-axis represents the time n ∈ {0, . . . , 107} while the y-axis

represents the number G
(k)
n of gaps of type k for k = 1, bm/2c and m. In each
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case, the picture illustrates the almost sure asymptotics Gn ∼ nv1 when n tends to
infinity (remember that v1 is a non random m-dimensional vector).

In Figure 6, m is small (m = 10, 30, 55). One can already catch sight of the gaussian
fluctuations around the deterministic vector nv1. Notice that the variance of the
gaussian limit increases with m, so that the amplitude of the fluctuation becomes
more visible for m = 30 and even more for m = 55.

m = 10 m = 30 m = 55

Figure 6: Simulations for 3 coordinates of the gap process (Gn)n for small m.

In Figure 7, m is large (m = 65, 100, 237). On can see the almost sure oscillations
around nv1 appear and become more visible when m grows. Notice that they are
particularly clear for m = 237, which is the threshold value when the third largest
real part of the roots of χm becomes larger than 1

2
. See the Appendix for more

details.

m = 65 m = 100 m = 237

Figure 7: Simulations for 3 coordinates of the gap process (Gn)n for large m.

Of course, one can make similar graphs for trajectories of the vector Gn
n

which con-
verges to the deterministic vector v1. This is done in Figure 8 where the convergence
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can be seen on the three drawn coordinates. Once more, the fluctuations around
the limit v1 are of different nature depending on m ≤ 59 or m ≥ 60, which is
also illustrated on this figure. In particular, on can see the “cos log n” almost sure
oscillations arise when m ≥ 60 and become more evident when m increases.

m = 10 m = 30 m = 55

m = 65 m = 100 m = 237

Figure 8: Simulations of 3 coordinates of Gn
n

for small and large values of m.

7.2 Simulations of Gn after scaling

A second kind of simulations focus on the possible scalings of the centered gap
process (Gn − nv1)n. In order to get convergence, according to Theorem 1, one has
to divide Gn−nv1 by

√
n when m ≤ 59 and by nσ2 when m ≥ 60. Figures 9 and 10

represent trajectories of the median coordinate (the bm/2c-th) of the normalized

vector process. Hereunder, Xn denotes this median coordinate Xn = G
bm/2c
n .

Figure 9 deals with small values of m, namely m = 10, 30, 55 again. On the x-

axis, time n ∈ {0, . . . , 107} ; on the y-axis, the normalized coordinate
Xn − nvbm/2c1√

n
which converges in distribution to a normal law. Note that even if the random vector
Gn − nv1√

n
converges in distribution, it almost surely diverges, which is illustrated
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by its brownian-like trajectory. One can refer to Gouet [16] for more details on this
continuous type process limit.

m = 10 m = 30 m = 55

Figure 9: Simulations of one coordinate of Gn after normalisation, for small values
of m.

Figure 10 deals with m = 65, 100, 237 which are large values of m. On the y-axis:

the normalized coordinate
Xn − nvbm/2c1

nσ2
, which is almost surely equivalent to some

ρ cos (τ2 log n+ ϕ) when n tends to infinity, where ρ is a positive random variable
(random amplitude), ϕ a [0, 2π[-valued random variable (random phase) and τ2 the
imaginary part of the complex eigenvalue λ2 = σ2+ iτ2. The random variables ρ and
ϕ are proportional to the module and the argument of the complex-valued random
variable Wm in Theorem 1.

m = 65 m = 100 m = 237

Figure 10: Simulations of one coordinate of Gn after normalization, for large values
of m.
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8 Appendix. The phase transition and σ2(m)

The phase transition that occurs for B-trees with parameter m relies on the roots
of the characteristic polynomial

χm(X) =
2m−1∏
k=m

(X + k)− (2m)!

m!
.

Denote by λ2 = λ2(m) the root of χm having the second largest real part and a
positive imaginary part. Denote also σ2 = σ2(m) the real part of λ2(m).
As shown in Section 4, the B-tree admits a Gaussian central limit theorem when
m ≤ 59 (small régime) whereas it admits an almost sure nonnormal fluctuation term
of order nσ2(m) around the drift when m ≥ 60 (large régime). Coming from Pólya urn
theory, this asymptotic behaviour depends on whether σ2(m) < 1/2 (small régime)
or σ2(m) > 1/2 (large régime).

Let F the two-variable meromorphic function defined by

F (x, y) =
Γ (x+ 2y) Γ (1 + y)

Γ (1 + 2y) Γ (x+ y)

where Γ denotes Euler’s Gamma function. For a given m ≥ 2, λ2 = λ2(m) = σ2+iτ2
is the root of equation F (X,m) = 1 having the the second largest real part σ2 (the
first one being reached by the evident root 1) and a positive imaginary part τ2.
Denote by ψ the classical Digamma function, the logarithmic derivative of Euler’s
Gamma. Since ∂

∂x
F (x, 1/y) = ψ (x+ 2/y)−ψ (x+ 1/y) = log 2+O(y) as y tends to

0, the analytic implicit function theorem shows that λ2(m) is an analytic function
of 1/m as m tends to +∞. Using the expansion

log Γ(z) = z log z − z − 1

2
log z +

1

2
log 2π +O

(
1

z

)
mod 2iπ

as |z| tends to infinity (the mod coming from the determination of the logarithm),
writing λ2(m) as a power series in 1/m and putting the first terms of this expansion
of in the equation logF (λ2(m),m) = 0 mod 2iπ, one gets by identification

σ2(m) = 1− π2

log3 2
× 1

m
+O

(
1

m2

)

τ2(m) =
2π

log 2
+

π

2 log2 2
× 1

m
+O

(
1

m2

)
as m tends to infinity. The graph of the function m 7→ σ2(m) is given in Figure 11.
Numerical values of the expansions give σ2 ≈ 1 − 29.63/m + . . . while τ2 ≈ 9.06 +
3.27/m+ . . .
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Figure 11: The graph of the sequence m 7→ σ2(m).

Moreover, the numerical values of σ2 around m = 60 are the following ones, showing
more accurately that σ2(m) < 1/2 if, and only if m ≤ 59. These numerical values
have been computed applying the Newton method to the χm function starting from
the point 0.5 + 9.0i, as suggested by the above expansions of σ2 and τ2.

m σ2(m)
57 0.4775726941
58 0.4866133472
59 0.4953467200
60 0.5037882018
61 0.5119521623
62 0.5198520971

In order to justify the choice of m = 237 in our drawings, denote by σ3(m) the
third largest real part of the roots of χm. The threshold value when σ3(m) becomes
larger than 1

2
is m = 237. Using general statements on Pólya urns, this shows that a

second almost sure phenomenon with magnitude nλ3 is added to the one we describe
in Theorem 1 as soon as m ≥ 238. That is the reason why the above figures have
been selected for m = 237; indeed, for m increasing from 60 until 237, the asymptotic
expansion of Gn contains the oscillating term of amplitude nσ2(m) more and more
visible compared to brownian terms in n

1
2 . For m > 237, the second oscillating

term of amplitude nσ3(m) appears, making the nσ2(m) oscillation less visible. The
numerical values of σ3(m) around m = 237 are the following ones.
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m σ3(m)
236 0.4971039325
237 0. 4992277960
238 0.5013338161
239 0.5034221856
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smoothing systems analysis. arXiv:1407.2879v1 [math.PR], 2014.
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