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1

Variable Length Markov Chains, Persistent
Random Walks: a close encounter

Abstract

We consider a walker on the line that at each step keeps the same direction with a
probability which depends on the time already spent in the direction the walker is
currently moving. These walks with memories of variable length can be seen as
generalizations of Directionally Reinforced Random Walks (DRRWs) introduced in
Mauldin et al. [16]. We give a complete and usable characterization of the recurrence
or transience in terms of the probabilities to switch the direction. These conditions
are related to some characterizations of existence and uniqueness of a stationary
probability measure for a particular Markov chain: in this chapter we define the
general model for words produced by a Variable Length Markov Chain (VLMC) and
we introduce a key combinatorial structure on words. For a subclass of these VLMC,
this provides necessary and sufficient conditions for existence of a stationary
probability measure

1.1. Introduction

This is the story of the encounter between two worlds: the world of random walks
and the world of Variable Length Markov Chains (VLMC). The meeting point turns
around the semi-Markov property of underlying processes.

In a VLMC, unlike fixed order Markov chains, the probability to predict the next
symbol depends on a possibly unbounded part of the past, the length of which depends
on the past itself. These relevant parts of pasts are called contexts. They are stored in a
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context tree. With each context is associated a probability distribution prescribing the
conditional probability of the next symbol, given this context.

Variable length Markov chains are now widely used as random models for
character strings. They have been introduced in Rissanen [17] to perform data
compression. When they have a finite memory, they provide a parsimonious
alternative to fixed order Markov chain models, in which the number of parameters to
estimate grows exponentially fast with the order; they are also able to capture finer
properties of character sequences. When they have infinite memory – this will be our
case of study in this chapter – they are a tractable way to build non-Markov models
and they may be considered as a subclass of “chaı̂nes à liaisons complètes” (Doeblin
and Fortet [11]) or “chains with infinite order” (Harris [15]).

Variable length Markov chains are used in bioinformatics, linguistics or coding
theory to modelize how words grow or to classify words. In bioinformatics, both
for protein families and DNA sequences, identifying patterns that have a biological
meaning is a crucial issue. Using VLMC as a model enables to quantify the influence
of a meaning pattern by giving a transition probability on the following letter of the
sequence. In this way, these patterns appear as contexts of a context tree. Notice that
their length may be unbounded (Bejerano and Yona [2]).

In addition, if the context tree is recognised to be a signature of a family (of
proteins say), this gives an efficient statistical method to test whether or not two
samples belong to the same family (Busch et al. [3]).

Therefore, estimating a context tree is an issue of interest and many authors
(statisticians or not, applied or not) stress the fact that the height of the context tree
should not be supposed to be bounded. This is the case in Galves and Leonardi [13]
where the algorithm CONTEXT is used to estimate an unbounded context tree or in
Garivier and Leonardi [14]. Furthermore, as explained in Csiszár and Talata [10], the
height of the estimated context tree grows with the sample size so that estimating a
context tree by assuming a priori that its height is bounded is not realistic.

There is a large litterature on constructing efficient estimators of context trees,
as well for finite or infinite context trees. This chapter is not a review of stastistics
issues, which would already be relevant for finite memory VLMC. This is a study
of the probabilistic properties of infinite memory VLMC as random processes, and
more specifically of the main property of interest for such processes: existence and
uniqueness of a stationary measure.

As already been said, VLMC are a natural generalisation to infinite memory of
Markov chains. It is usual to index a sequence of random variables forming a Markov
chain with positive integers and to make the process grow to the right. The main
drawback of this habit for infinite memory process is that the sequence of the process is
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read from left to right whereas the (possibly infinite) sequence giving the past needed
to predict the next symbol is read in the context tree from right to left, thus giving rise
to confusion and lack of readability. For this reason, in this chapter, the VLMC grows
to the left. In this way, both the process sequence and the memory in the context tree
are read from left to right.

Classical random walks have independent and identically distributed increments.
In the literature, Persistent Random Walks, also called Goldstein-Kac Random Walks
or Correlated Random Walks refer to random walks having a Markov chain of finite
order as an increment process. For such walks, the dynamics of trajectories has a short
memory of given length and the random walk itself is not Markovian any more. What
happens whenever the increments depend on a non bounded past memory?

Consider a walker on Z, allowed to increment its trajectory by −1 or 1 at each
step of time. Assume that the probability to keep the current direction ±1 depends
on the time already spent in the said direction – the distribution of increments acts
thus as a reinforcement of the dependency from the past. More precisely, the process
of increments of such a 1-dimensional random walk is a Markov chain on the set of
(right-)infinite words, with variable – and unbounded – length memory: a VLMC.
The concerned VLMC is defined in Section 1.3.1. It is based on a context tree called
double comb. Besides, Section 1.3.2 deals with a 2-dimensional persistent random
walk defined in an analogous manner on Z2 by a VLMC based on a context tree
called quadruple comb.

These random walks which have an unbounded past memory can be seen as a
generalization of “Directionally Reinforced Random Walks (DRRW)” introduced by
Mauldin et al. [16], in the sense that the persistence times are anisotropic ones. For a 1-
dimensional random walk associated with a double comb, a complete characterization
of recurrence and transience, in terms of changing (or not) direction probabilities,
is given in Section 1.3.1. More precisely, when one of the random times spent in a
given direction (the so-called persistence times) is an integrable random variable, the
recurrence property is equivalent to a classical drift-vanishing. In all other cases, the
walk is transient unless the weight of the tail distributions of both persistent times are
equal. In dimension 2, sufficient conditions of transience of recurrence are given in
Section 1.3.2.

Actually, because of the very specific form of the underlying driving VLMC, these
persistent random walks turn out to be in one-to-one correspondence with so-called
Markov Additif Processes. Section 1.5 is devoted to the close links between persistent
random walks, Markov additive processes, semi-Markov chains and VLMC.

In Section 1.2, the definition of a general VLMC and a couple of examples are
given. In Section 1.3, the persistent random walks (PRW) are defined and known
results on their recurrence properties are collected. In view to the final Section 1.5



8 Variable Length Markov Chains, Persistent Random Walks: a close encounter

where we show how PRW and VLMC meet through the world of semi-Markov chains,
Section 1.4 is devoted to results – together with a heuristic approach – on the existence
and unicity of stationary measures for a VLMC.

1.2. Variable Length Markov Chains: definition of the model

Let A be a finite set, called the alphabet. In this text, A will most often be the
standard alphabet A = {0, 1}, but also A = {d, u} (for down and up) or A =
{n, e, w, s} (for the cardinal directions). Let

R = {αβγ · · · : α, β, γ, · · · ∈ A}

be the set of right-infinite words over A, written by simple concatenation. A VLMC
on A, defined below and most often denoted by (Un)n∈N, is a particular type of R-
valued discrete time Markov chain where:
• the process evolves between time n and time n + 1 by adding one letter on the

left of Un;
• the transition probabilities between time n and time n + 1 depend on a finite -

but not bounded - prefix 1 of the current word Un.

Giving a formal frame of such a process leads to the following definitions. For a
complete presentation of VLMC, one can also refer to Cénac et al. [6].

As usual, a tree on A is a set T of finite words – namely a subset of ∪n∈NAn –
which contains the empty word ∅ (the root of T ) and which is prefix-stable: for all
finite words u, v, uv ∈ T =⇒ u ∈ T . A tree is made of internal nodes (u ∈ T is
internal when ∃α ∈ A, uα ∈ T ) and of leaves (u ∈ T is a leaf when it has no child:
∀α ∈ A, uα /∈ T ).

DEFINITION 1.1 (Context tree).– A context tree on A is a saturated tree on A having
an at most countable set of infinite branches.

The tree T is saturated whenever any internal node has # (A) children: for any
finite word u and for any α ∈ A, uα ∈ T =⇒ (∀β ∈ A, uβ ∈ T ). A right-infinite
word on A is an infinite branch of T when all its finite prefixes belong to T .

Following the vocabulary introduced by Rissanen, a context of the tree is a leaf
or an infinite branch. A finite or right-infinite word on A is an external node when
it is neither internal nor a context. See below Figure 1.2.0.1 that illustrates these
definitions, as well as the pref function defined hereunder.

1. In fact, an infinite prefix might be needed in a denumerable number of cases.
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DEFINITION 1.2 (pref function).– Let T be a context tree. If w is any external node
or any context, the symbol pref w denotes the longest (finite or infinite) prefix of w
that belongs to T .

In other words, pref w is the only context c for which w = c · · · For a more visual
presentation, hangw by its head (its left-most letter) and insert it into the tree; the only
context through which the word goes out of the tree is its pref .

An internal node A context
1000

0 1

Figure 1.2.0.1. A context tree on the alphabet A = {0, 1}. The dotted lines are
possibly the beginning of infinite branches. Any word that writes 1000 · · · , as the one

drawn dashed, admits 1000 as a pref.

With these definitions, it is now possible to define a VLMC.

DEFINITION 1.3 (VLMC).– Let T be a context tree. For every context c of T , let qc
be a probability measure onA. The variable length Markov chain (VLMC) defined by
T and by the (qc)c is the R-valued discrete-time Markov chain (Un)n∈N defined by
the following transition probabilities: ∀n ∈ N, ∀α ∈ A,

P (Un+1 = αUn|Un) = qpref(Un) (α) . [1.2.1]

To get a realisation of a VLMC as a process on R, take a (random) right infinite
word

U0 = X0X−1X−2X−3 · · ·

At each step of time n ≥ 0, one gets Un+1 by adding a random letter Xn+1 on the left
of Un:

Un+1 = Xn+1Un

= Xn+1Xn · · ·X1X0X−1X−2 · · ·
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under the conditional distribution [1.2.1].

REMARK 1.1.– Probabilizing a context tree consists, as in Definition 1.3, in endowing
it with a family of probability measures on the alphabet, indexed by the set of contexts.
This vocabulary is used below.

REMARK 1.2.– Assume that the context tree is finite and denote its height by h; in
this condition, the VLMC is just a Markov chain of order h on A. On the contrary,
when the context tree is infinite, and this is mainly our case of interest, the VLMC is
generally not a Markov process on A.

EXAMPLE 1.1.– TakeA = {n, e, w, s} as an (ordered) alphabet, so that the daughters
of an internal node are represented as at the left side of Figure 1.2.0.2. Making the
transition probabilities P (Un+1 = αUn|Un) depend only on the length of the largest
prefix of the form nk (k ≥ 0) of Un amounts to taking a comb as a context tree, as
drawn at the right side of Figure 1.2.0.2. Its finite contexts are the nkα where k ≥ 0
and α ∈ A \ {n}.

n e w s

Figure 2

1

Figure 1.2.0.2. On the left: how one can represent trees on A = {n, e, w, s}. On the
right, the so-called left comb on A = {n, e, w, s}.

EXAMPLE 1.2.– Take again A = {n, e, w, s} as an alphabet. Making the transition
probabilities P (Un+1 = αUn|Un) depend only on the length of the largest prefix of
the form αk (k ≥ 1) of Un where α is any letter amounts to taking a quadruple comb
as a context tree, as drawn at the right side of Figure 1.2.0.3. In the same vein, if
one takes A = {u, d}, the double comb is the context tree drawn at the left side of
Figure 1.2.0.3. In the corresponding VLMC, the transitions depend only on the length
of the last current run uk or dk, k ≥ 1. The double comb and the quadruple comb are
used below to define persistent random walks.

EXAMPLE 1.3.– Take A = {0, 1} (naturally ordered for the drawings). The left
comb of right combs, drawn at the left side of Figure 1.2.0.4, is the context tree of
a VLMC that makes its transition probabilities depend on the largest prefix of Un of
the form 0p1q . If one has to take into consideration the largest prefix of the form 0p1q
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Figure 1.2.0.3. The double comb and the quadruple comb.

or 1p0q , one has to use the double comb of opposite combs, as drawn at the right side
of Figure 1.2.0.4.

Figure 4

1

Figure 5

1

Figure 1.2.0.4. Context trees on A = {0, 1}: the left comb of right combs (on the left)
and a double comb of opposite combs (on the right).

DEFINITION 1.4 (Non-nullness).– A VLMC is called non-null when no transition
probability vanishes, i.e. when qc(α) > 0 for every context c and for every α ∈ A.

Non-nullness appears below as an irreducibility-like assumption made on the
driving VLMC of persistent random walks and for existence and unicity of an
invariant probability measure for a general VLMC as well.

1.3. Definition and behaviour of Persistent Random Walks

In this section, the so called Persistent Random Walks (PRW) are defined. A PRW
is a random walk driven by some VLMC. In dimension 1 and 2, results on transience
and recurrence of PRW are given. These results are detailed and proven in Cénac,
Le Ny, De Loynes and Offret [9], Cénac et al. [5] in dimension one and in Cénac et al.
[8] in dimension two.



12 Variable Length Markov Chains, Persistent Random Walks: a close encounter

1.3.1. Persistent Random Walks in dimension one

In this section, we deal with 1-dimensional Persistent Random Walks (PRW).
Notice that, contrary to the classical random walk, a PRW is generally not Markovian.
Let A := {d, u} = {−1, 1} (d for down and u for up) and consider the double comb
on this alphabet as a context tree, probabilize it and denote by (Un)n a realisation of
the associated VLMC. The nth increment Xn of the PRW is given as the first letter
of Un: define the persistent random walk S = (Sn)n≥0 by S0 = 0 and, for n ≥ 1,

Sn :=

n∑
`=1

X`, [1.3.1]

so that for any n ≥ 1, m ≥ 0,

P (Sm+1 = Sm + 1|Um = dnu . . .) = qdnu(u)

P (Sm+1 = Sm − 1|Um = und . . .) = qund(d).

Furthermore, for sake of simplicity and without loss of generality, we condition the
walk to start a.s. from {X−1 = u,X0 = d} – this amounts to changing the origin of
time. In this model, a walker on a line keeps the same direction with a probability
which depends on the discrete time already spent in the direction the walker is
currently moving. See Figure 1.3.1.1. This model can be seen as a generalisation of
Directionally Reinforced Random Walks (DRRWs) introduced in Mauldin et al. [16].

Taking different probabilized context trees would lead to different probabilistic
impacts on the asymptotic behaviour of resulting PRWs. Moreover, the
characterization of the recurrent versus transient behaviour is difficult in general. We
state here exhaustive recurrence criteria for PRWs defined from a double comb.

In order to avoid trivial cases, we assume that S cannot be frozen in one of the two
directions with a positive probability. Therefore, we make the following assumption.

ASSUMPTION 1 (finiteness of the length of runs).– For any α, β ∈ {u, d}, α 6= β,

lim
n→+∞

(
n∏
k=1

qαkβ(α)

)
= 0. [1.3.2]

Let τun and τdn be respectively the length of the nth rise and of the nth descent.
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Mn =

n∑
`=1

Y`

Sn

Figure 1.3.1.1. A one-dimensional PRW

Then by a renewal type property (see Cénac et al. [5, Prop. 2.3]), (τdn)n≥1 and
(τun )n≥1 are independent sequences of i.i.d. random variables. Their distribution tails
are straightforwardly given by: for any α, β ∈ {u, d}, α 6= β and n ≥ 1,

P(τα1 ≥ n) =

n−1∏
k=1

qαkβ(α). [1.3.3]

Note that Assumption 1 amounts to supposing that the persistence times τdn and τun are
almost surely finite. The jump times (or breaking times) are: B0 = 0 and, for n ≥ 1,

B2n :=

n∑
k=1

(
τdk + τuk

)
and B2n+1 := B2n + τdn+1. [1.3.4]

In order to deal with a more tractable random walk built with the possibly unbounded
but i.i.d. increments Yn := τun − τdn , we introduce the underlying skeleton random
walk (Mn)n≥1 which is the original walk observed at the random times of up-to-down
turns:

Mn :=

n∑
k=1

Yk = SB2n
. [1.3.5]
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Two main quantities play a key role in the asymptotic behaviour, namely the
expectations of the lengths of runs: with Formula [1.3.3], let

Θd := E[τd1 ] =
∑
n≥1

n−1∏
k=1

qdku(d) and Θu := E[τu1 ] =
∑
n≥1

n−1∏
k=1

qukd(u).[1.3.6]

Actually, Θd and Θu already appeared in Cénac et al. [5, Prop. B1] where it is shown
that the driving VLMC of a 1-dimensional PRW admits a unique invariant probability
measure if, and only if Θd <∞ and Θu <∞.

Note that the expectation of Y1 is well defined in [−∞,+∞] whenever at least one
of the persistence times τu1 or τd1 is integrable. Thus, as soon as Θd <∞ or Θu <∞,
let

dM := E[Y1] = Θu −Θd︸ ︷︷ ︸
∈[−∞,+∞]

[1.3.7]

and

dS :=
E[τu1 ]− E[τd1 ]

E[τu1 ] + E[τd1 ]
=

Θu −Θd

Θu + Θd
∈ [−1, 1]. [1.3.8]

An elementary computation shows that E (Mn) = ndM and E (Sn) ∼ ndS when n
tends to infinity. Thus, dM and dS appear as asymptotic drifts when the walks (Mn)n
and (Sn)n respectively turn out to be transient (see Table 1.3.1.1). The behaviour of
the walk also depends on quantities Jα|β , defined for α and β ∈ A, α 6= β by:

Jα|β :=

∞∑
n=1

nP(τα1 = n)∑n
k=1 P(τβ1 ≥ k)

.

A complete and usable characterization of the recurrence and the transience of the
PRW in terms of the probabilities to persist in the same direction or to switch is
given in Proposition 1.1. Its proof relies on a criterion of Erickson (see Erickson
[12]), applied to the skeleton walk (Mn)n which is simpler to deal with because its
increments are independent.

PROPOSITION 1.1.– Under non-nullness assumption and Assumption 1, the random
walk (Sn)n is recurrent or transient as described in Table 1.3.1.1.
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Θu <∞ Θu =∞

Θd <∞

drifting +∞

drifting +∞recurrent dS > 0 drifting +∞
dS = 0 drifting −∞

dS < 0

Θd =∞ drifting −∞

drifting +∞
recurrent ∞ = Ju|d > Jd|u

Ju|d = Jd|u =∞ drifting −∞
∞ = Jd|u > Ju|d

Table 1.3.1.1. Recurrence versus Transience (drifting) for (Sn)n in dimension 1.

The most fruitful situation emerges when both running times τu1 and τd1 have
infinite means. In that case, the recurrence properties of (Sn)n are related to the
behaviour of the skeleton random walk (Mn)n defined in [1.3.5], the drift of which,
dM , is not defined. Thus the behaviour of (Sn)n depends on the comparison between
the distribution tails of τu1 and τd1 defined in [1.3.3], expressed by the quantities Jα|β .
Notice that the case when both Ju|d and Jd|u are finite does not appear in the table
since it would imply that Θu <∞ and Θd <∞ (see Erickson [12]).

In all three other cases, the drift dS is well defined and the PRW is recurrent if

and only if dS = 0. In that case, lim
n→∞

Sn
n

= dS = 0. Notice that, modifying one
transition qc transforms a recurrent PRW into a transient one, since dS becomes non-
zero.

1.3.2. Persistent Random Walks in dimension two

Take the alphabet A := {n, e, w, s}. Here, (e, n) stands for the canonical basis
of Z2, w = −e and s = −n. Hence, the letters e, n, w and s stand for moves to the east,
north, west and south respectively. Having in mind a random walk with increments
in A, any word of the form αβ, α, β ∈ A, α 6= β is called a bend. For the sake of
simplicity, we condition the walk to start a.s. with a ne bend: {X−1 = n, X0 = e}.

Take a non-null VLMC associated with a quadruple comb on A as drawn in
Figure 1.2.0.3: the contexts are αnβ for α, β ∈ A, α 6= β, n ≥ 1 and the attached
probability distributions are denoted by qαnβ . The 2-dimensional PRW (Sn)n is
defined, using this VLMC, as in Formula [1.3.1].

Contrary to the 1-dimensional PRWs, as detailed below, the probability to change
direction depends on the time spent in the current direction but also on the previous
direction. As in dimension one, we intend to avoid that S remains frozen in one
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J0 = ne
J1 = en

J2 = nw

J3 = ws

J4 = se J5 = en

J6 = ns

J7 = sw

B1

B2 − B1

M0
M1

M2

M3

M4
M5

M6

M7

Figure 1.3.2.1. A walk in dimension two.

of the four directions with a positive probability. Therefore, we make the following
assumption, analogous to Assumption 1 in dimension 2.

ASSUMPTION 2 (finiteness of the length of runs).– For any α, β ∈ {n, e, w, s}, α 6= β,

lim
n→+∞

(
n∏
k=1

qαkβ(α)

)
= 0. [1.3.9]

Let (Bn)n≥0 be the breaking times defined inductively by

B0 = 0 and Bn+1 = inf {k > Bn : Xk 6= Xk−1} . [1.3.10]

As in dimension 1, Assumption 2 implies that the breaking timesBn are almost surely
finite.

Define the so called internal chain (Jn)n≥0 by J0 = ne and, for all n ≥ 1,

Jn := XBn−1
XBn

. [1.3.11]

Let us illustrate these random variables by a small example, in which: B1 = 4, B2 =
7, J0 = X−1X0, J1 = XB0XB1 = X0X4, J2 = XB1XB2 = X4X7.
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−1 0 1 2 3 4 5 6 7

n e e e e n n n w

B0 = 0

J0 = ne

B1 = 4

J1 = en

B2 = 7

J2 = nw

n:
Xn:

The process (Jn)n≥0 is an irreducible Markov chain on the set of bends S :=
{αβ|α ∈ A, β ∈ A, α 6= β}. Its Markov kernel is defined by: for every β, α, γ ∈ A
with β 6= α and α 6= γ,

P (βα;αγ) :=

∞∑
n=1

(
n−1∏
k=1

qαkβ(α)

)
qαnβ(γ), [1.3.12]

the numbers P (αβ, γδ) being 0 for every couple of bends not of the previous form.
Remark that the non-nullness assumption (see Definition 1.4) implies the irreducibility
of (Jn)n and its aperiodicity. The state space S is finite so that (Jn)n is positive
recurrent: it admits a unique invariant probability measure πJ .

Denote T0 = 0 and Tn+1 := Bn+1 − Bn for every n ≥ 0. These waiting times
(also called persistence times) are not independent, contrary to the one-dimensional
case. The skeleton random walk (Mn)n≥0 on Z2 – which is the PRW observed at the
breaking times – is then defined as

Mn := SBn
=

n∑
i=1

 Bi∑
k=Bi−1+1

Xk

 =

n∑
i=1

(Bi −Bi−1)XBi
. [1.3.13]

Notice that (Mn)n is generally not a classical RW with i.i.d. increments. Nevertheless,
taking into account the additional information given by the internal Markov chain
(Jn)n, then (Jn,Mn)n is a Markov Additive Process (see Çinlar [4]) as it will appear
in Section 1.5.

Here, (Jn)n is positive recurrent but this does not imply the recurrence of (Sn)n
or (Mn)n. Moreover, (Sn)n and (Mn)n may have different behaviours. Explicit
necessary and sufficient conditions for the recurrence of (Mn)n in terms of
characteristic functions and convergence of suitable series are given in Cénac et al.
[8, Theorem 2.1]. The following proposition states a dichotomy between some
recurrence versus transience phenomenon.

THEOREM 1.1.– Under non-nullness assumption, the following dichotomy holds.
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(i) The series
∑
n P (Mn = 0) diverges if, and only if the process (Mn)n is

recurrent in the following sense:

∃r > 0, P
(

lim inf
n→∞

‖Mn‖ < r
)

= 1.

(ii) The series
∑
n P (Mn = 0) converges if, and only if the process (Mn)n is

transient in the following sense:

P
(

lim
n→∞

‖Mn‖ =∞
)

= 1.

Does the recurrence (resp. the transience) of (Mn)n and (Sn)n occur at the same
time? The answer to this twenty-year-old question is no:

THEOREM 1.2 (Definitive invalidation of the conjecture in Mauldin et al. [16]).–
There exist recurrent PRWs (Sn)n having an associated transient skeleton (Mn)n.

Supposing that the persistence time distributions are horizontally and vertically
symmetric is a natural necessary condition for the random walk (Sn)n to be
recurrent. One example is given by the Directionally Reinforced Random Walk
(DRRW), originally introduced in Mauldin et al. [16], see Figure 1.3.2.2. Some

qαnβ(α)

1
3 (1− qαnβ(α))

1
3 (1− qαnβ(α))

1
3 (1− qαnβ(α))

Figure 1.3.2.2. The original Directionally Reinforced Random Walk (DRRW).

particular values of the transition probabilities qαnβ provide counterexamples. It is
shown in Cénac et al. [8] that the corresponding distributions of the persistence times
must be non-integrable. In Section 1.5, this non integrability will be related to non
existence of any invariant probability measure for the driving VLMC.

1.4. VLMC: existence of stationary probability measures

Take a VLMC denoted by U = (Un)n≥0, defined by a pair (T , q) where T is
a context tree on an alphabet A and q = (qc)c∈C a family of probability measures
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on A, indexed by the contexts of T . A probability measure π on R is stationary or
invariant (with regard to U ) whenever π is the distribution of every Un as soon as it is
the distribution of U0. The question of interest consists here in finding conditions on
(T , q) for the process to admit at least one – or a unique one – stationary probability
measure. The heuristic presentation aims to show how combinatoric objects, namely
the α-LIS of contexts, and conditional probabilities, the cascades, naturally emerge.

Assume that π is a stationary probability measure onR.

• First step: finite words. Since R is endowed with the cylinder σ-algebra, π is
determined by its values π (wR) on the cylinders wR, where w runs over all finite
words on A.

• Second step: longest internal suffixes of words. Assume that e is a finite
non-internal word and take a ∈ A. Then, its pref is well defined and, because of
Formula [1.2.1], since π is stationary,

π (αeR) = qpref(e)(α)× π (eR) . [1.4.1]

Iterating this formula as far as possible leads to the following definitions. Consider any
non-empty finite word w. It is uniquely decomposed as w = pαs = β1β2β3 · · ·β`αs,
where α and the β’s are letters and s is the longest internal suffix of w. The integer ` is
non-negative and p = β1β2 · · ·β` is a prefix of w that may be empty – in which case
` = 0.

DEFINITION 1.5 (lis and α-LIS).– With these notations, the Longest Internal Suffix s
is shortened as the lis of w. The word αs is called the α-LIS of w.

DEFINITION 1.6 (cascade).– With the notation above, the cascade of w is the product

casc(w) = qpref(β2···β`αs)(β1)qpref(β3···β`αs)(β2) · · · qpref(αs)(β`). [1.4.2]

Note that this definition makes sense because all the βk · · ·β`αs are non-internal
words, k ≥ 2. Moreover, if w = αs where s is internal, then ` = 0 and casc(w) = 1.
With these definitions, iterating Formula [1.4.1] leads to the following equality, named
Cascade Formula: for every non-empty finite word w having αs as an α-LIS,

π (wR) = casc(w)× π (αsR) . [1.4.3]

This shows that π is determined by its values on words of the form αs where s is
internal and α ∈ A.
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• Third step: finite contexts. Assume that s is an internal word and that α ∈ A.
It is shown in Cénac, Chauvin, Paccaut and Pouyanne [7] that a stationary probability
measure never charges infinite words so that, by disjoint union,

π (αsR) =
∑

c: finite context
c=s···

π (αcR) =
∑

c: finite context
c=s···

qc(α)π (cR) . [1.4.4]

Note that the set of indices may be infinite but the family is summable because π is
a finite measure. This shows that π is entirely determined by its values π (cR) on the
finite contexts.

• Fourth step: α-LIS of finite contexts. Cascade Formula [1.4.2] applied to any
finite context c (contexts are non-empty words) writes π (cR) = casc(c)π (αcscR),
where αcsc is the α-LIS of c. Denote by S = S (T ) the set of finite context α-LIS:

S = {αcsc : c finite context} .

If s is an internal word and if α ∈ A, then Formula [1.4.4] leads to

π (αsR) =
∑

c: finite context
c=s···

casc (αc)π (αcscR) , [1.4.5]

showing that π is determined by its values π (αcscR) on S.

• Last step: a (generally infinite) linear system. When w and v are finite words and
when αs ∈ S, the notation

w = v · · · = · · · [αs]

stands for: w has v as a prefix and αs as an α-LIS. Writing Formula [1.4.5] for every
αs ∈ S and grouping in each of them the terms that arise from contexts having the
same α-LIS leads to the following square system (at most countably many unknowns
π (αsR) and as many equations):

∀αs ∈ S, π (αsR) =
∑
βt∈S

π (βtR)

 ∑
c: finite context
c=s···=···[βt]

casc (αc)

 . [1.4.6]
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DEFINITION 1.7 (Matrix Q).– When T is a context tree having S as a context α-LIS
set, Q = Q (T ) is the S-indexed square matrix defined by:

∀αs, βt ∈ S, Qβt,αs =
∑

c: finite context
c=s···=···[βt]

casc (αc) ∈ [0,+∞]. [1.4.7]

Thus, System [1.4.6] tells us that, when π is a stationary measure, the row-vector
(π (αsR))αs∈S appears as a left-fixed vector of the matrix Q.

DEFINITION 1.8 (Cascade series).– For every αs ∈ S, denote

καs =
∑

c: finite context
c=···[αs]

casc(c) ∈ [0,+∞].

When this series is summable, one says that the cascade series of αs converges.
Whenever the cascades series of all αs ∈ S converge, one says that the cascade
series (of the VLMC) converge.

Note that the convergence of (all) the cascade series is sufficient to guarantee the
finiteness ofQ’s entries. Actually, for a general VLMC, as it is made precise in Cénac,
Chauvin, Paccaut and Pouyanne [7], the convergence of the cascade series appears as
a pivot condition when dealing with existence and unicity of a stationary probability
measure. In this chapter, we just state a necessary and sufficient condition for a special
kind of VLMC: the stable ones that have a finite S. The following proposition is
proven in Cénac, Chauvin, Paccaut and Pouyanne [7].

PROPOSITION 1.2.– Let T be a context tree. The following conditions are equivalent.

(i) ∀α ∈ A, ∀w ∈ W , αw ∈ T =⇒ w ∈ T .

(ii) If c is a finite context and α ∈ A, then αc is non-internal.

(iii) T ⊆ AT = {αw, α ∈ A, w ∈ T }.
(iv) For any VLMC (Un)n associated with T , the process (pref(Un))n∈N is a

Markov chain that has the set of contexts as a state space.

The context tree is called stable whenever one of these conditions is fulfilled.

It turns out that the stability of T together with the non-nullness of the VLMC
imply both stochasticity and irreducibility of the matrixQ. Consequently, in the simple
case where Q is a finite-dimensional matrix, there exists (thanks to stochasticity) a
unique (thanks to irreducibility) left-fixed vector for Q. As a consequence of a much
more general result proven in Cénac, Chauvin, Paccaut and Pouyanne [7], this implies
existence and unicity of a stationary probability measure for the VLMC, as stated
below.
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THEOREM 1.3.– Let (T , q) be a non-null stable probabilized context tree. If #S <∞,
then the following are equivalent.

1) The VLMC associated to (T , q) has a unique stationary probability measure.

2) The cascade series converge (see Definition 1.8).

Notice that in the non stable case, the matrix Q is generally not stochastic nor
is it even substochastic. Notice also that, even in the stable case, when #S = ∞,
the matrix Q may be stochastic, irreducible and positive recurrent while the VLMC
does not admit any stationary probability measure. One can find such an example
in Cénac, Chauvin, Paccaut and Pouyanne [7], built with a left comb of left comb –
see Example 1.3.

1.5. Where VLMC and PRW meet

On one hand, a VLMC is defined by its context tree and its transition probability
distributions qc – in particular the double and the quadruple combs which are stable
trees with finitely many context α-LIS.

Necessary and sufficient conditions of existence and uniqueness of stationary
probability measures are given in terms of cascade series. On the other hand, for
PRW (defined from VLMC), recurrence properties are written in terms of persistence
times. Our aim is to build a bridge between these two families of objects and
properties. The meeting point turns out to be the semi-Markov processes of α-LIS
and bends.

1.5.1. Semi-Markov chains and Markov Additive Processes

Semi-Markov chains are defined following Barbu and Limnios [1] thanks to so-
called Markov renewal chains.

DEFINITION 1.9 (Markov renewal chain).– A Markov chain (Jn, Tn)n≥0 with state
space E×N is called a (homogeneous) Markov renewal chain (shortly MRC) whenever
the transition probabilities satisfy: ∀n ∈ N, ∀a, b ∈ E , ∀j, k ∈ N,

P
(
Jn+1 = b, Tn+1 = k

∣∣Jn = a, Tn = j
)

= P
(
Jn+1 = b, Tn+1 = k

∣∣Jn = a
)

=: pa,b(k)

and ∀a, b ∈ E , pa,b(0) = 0. For such a chain, the family p = (pa,b(k))a,b∈A,k≥1 is
called its semi-Markov kernel.
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DEFINITION 1.10 (Semi-Markov chain).– Let (Jn, Tn)n≥0 be a Markov renewal
chain with state space E × N. Assume that T0 = 0. For any n ∈ N, let Bn be defined
by

Bn =

n∑
i=0

Ti.

The semi-Markov chain associated with (Jn, Tn)n≥0 is the E-valued process (Zj)j≥0

defined by

∀j such that Bn ≤ j < Bn+1, Zj = Jn.

Note that the sequence (Bn)n≥0 is almost surely increasing because of the
assumption pa,b(0) = 0 (instantaneous transitions are not allowed) that guarantees
that Tn ≥ 1 almost surely, for any n ≥ 1.

The Bn are jump times, the Tn are sojourn times in a given state and Zj stagnates
at a same state between two successive jump times. The process (Jn)n is called the
internal (underlying) chain of the semi-Markov chain (Zn)n.

The previous definitions make transitions to the same state between time n and
time n + 1 possible. Nevertheless, one can boil down to the case where pa,a(k) = 0
for all a ∈ E , k ∈ N (see the details in Cénac, Chauvin, Paccaut and Pouyanne [7]).

A close notion, Markov Additive Processes, can be found in Çinlar [4].

1.5.2. Persistent Random Walks induce semi-Markov chains

Let us start with 1-dimensional PRW, as defined in Section 1.3.1. In this case, at
each time j, j ≥ 0, the increment Xj of the walk S takes d or u as a value (see Figure
1.3.1.1). Let us see that (Xj)j≥0 is a semi-Markov chain, starting from X0 = d.
Remember that Bn denotes the n-th jump times – see Equation [1.3.4]. Define then
(Jn)n by

Jn := XBn
. [1.5.1]

Moreover, let Tn be the n-th waiting time, namely T0 = 0 and, for n ≥ 1,

Tn = Bn −Bn−1.
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These waiting times are related to the persistence times τ by the following formulae:
for all k ≥ 1,

T2k := τuk and T2k−1 := τdk . [1.5.2]

With these notations, (Jn, Tn)n≥0 is a Markov renewal chain and its semi-Markov
kernel writes: ∀α, β ∈ {u, d}, α 6= β,∀k ≥ 1,

pα,β(k) =

k−1∏
j=1

qαjβ(α)

 qαkβ(β), [1.5.3]

as can be straightforwardly checked. Moreover, Assumption 1 guarantees that the Tn
are a.s. finite. Besides, Formulae [1.3.6] write

E (T2k) = Θu and E (T2k+1) = Θd.

The situation in dimension 1 is summarized by the following proposition.

PROPOSITION 1.3.– For a PRW in dimension 1, defined by a VLMC associated with
a double comb, the sequence (Xj)j of the increments is an A-valued semi-Markov
chain with Markov renewal chain (Jn, Tn)n as defined in [1.5.1] and [1.5.2] and its
semi-Markov kernel is given by equation [1.5.3].

Let us deal now with the 2-dimensional PRW, defined in Section 1.3.2. At each
time j, j ≥ 0, the increment Xj of the walk S takes n, e, w or s as a value. But, as
already noticed, changing direction depends on the time spent in the current direction
but also, contrary to the 1-dimensional PRWs, on the previous direction. In
otherwords, the bends play the main role. This gives rise to the process (Zj)j , valued
in the set of bends {αβ : α, β ∈ A, α 6= β}, defined in the following manner:
Z0 = X−1X0 = ne and, for j ≥ 1, Zj = αβ if and only if Xj = β and the first letter
distinct from β in the sequence Xj−1, Xj−2, Xj−3, · · · is α. Let us see that (Zj)j≥0

is a semi-Markov chain. Use here notations (Jn)n, (Bn)n and (Tn)n of Section 1.3.2.

Notice that, contrary to the one-dimensional case, the waiting times Tn are not
independent. Nevertheless, (Jn, Tn)n≥0 is a Markov renewal chain with semi-Markov
kernel

pβα,αγ(k) :=

k−1∏
j=1

qαjβ(α)

 qαkβ(γ), [1.5.4]

as can be straightforwardly checked. Summarizing, the following proposition holds.
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PROPOSITION 1.4.– For a PRW in dimension 2, defined by a VLMC associated with a
quadruple comb, the sequence (Zj)j of the bends is a semi-Markov chain with Markov
renewal chain (Jn, Tn)n as defined in Section 1.3.2. Its semi-Markov kernel is given
by equation [1.5.4]. In addition, (Jn, Bn)n is a Markov Additive Process.

1.5.3. Semi-Markov chain of the α-LIS in a stable VLMC

In this section, let us consider a more general case than a double comb or a
quadruple comb, namely a stable VLMC. In this case, there is always a semi-Markov
chain induced by the process (Un)n, as described in the following.

Let (Un)n≥0 be a stable non-null VLMC such that the series of cascades converge
(see Definition 1.8). Recall that S denotes the set of context α-LIS of the VLMC. Let
(Cn)n≥0 be the sequence of contexts and for n ≥ 0, let Zn be the α-LIS of Cn:

Cn = pref(Un) and Zn = αCn
sCn

.

PROPOSITION 1.5.– Let (Bn)n≥0 be the increasing sequence of times defined by
B0 = 0 and for any n ≥ 1,

Bn = inf {k > Bn−1, |Ck| ≤ |Ck−1|} = inf {k > Bn−1, Ck ∈ S}

and let Tn = Bn −Bn−1 for n ≥ 1 and T0 = 0. For any n ≥ 0, let Jn = ZBn . Then

(i) Bn and Tn are almost surely finite and for αs ∈ S, E
(
Tn
∣∣Jn = αs

)
= καs.

(ii) (Zn)n≥0 is an S-valued semi-Markov chain associated with the Markov renewal
chain (Jn, Tn)n≥0.

(iii) The associated semi-Markov kernel writes: ∀αs, βt ∈ S, ∀k ≥ 1,

pαs,βt(k) =
∑

c∈C, c=t···
c=···[αs]

|c|=|αs|+k−1

casc (βc) .

The proof is detailed in Cénac, Chauvin, Paccaut and Pouyanne [7]. It relies on the
way the VLMC grows between two jump times: at the beginning, letters are added to
the current contextCn, the α-LIS does not change and the length of the current context
increases one by one. At a certain time (a.s. finite), adding a letter to the current context
does not provide a context any more but an external node. At this moment, it happens
(it is not trivial and only holds for a stable context tree) that

(i) the α-LIS of the current context is renewed;

(ii) the length of current context does not grow;
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(iii) the current context begins by a lis.

These mechanisms explain the expressions ofBn and the formula giving the semi-
Markov kernel.

REMARK 1.3.– In the very particular case of the double or quadruple comb, the semi-
Markov chain (Zn)n contains as much information as the chain (Un)n. But in general,
the semi-Markov chain (Zn)n contains less information than the chain (Un)n. To
illustrate this, here is an example with a finite context tree.

α-LIS αs contexts having αs as an α-LIS
10 10,010,110,0010,0110

000 000
111 111,0111

0011 0011

In this example, 0010 and 0110 are two contexts of the same length, with the
same α-LIS 10 and beginning by the same lis 0. Hence if we know that Jn = 10,
Bn+1 − Bn = 3 and Jn+1 = 10, then Zj is uniquely determined between the two
successive jump times, whereas there are two possibilities to reconstruct the VLMC
(Un)n. With the notations of Proposition 1.5, there are two cascade terms in p10,10(3):

p10,10(3) = P (CBn+1 = 010, CBn+2 = 0010, CBn+3 = 10010|CBn
= 10)

+ P (CBn+1 = 110, CBn+2 = 0110, CBn+3 = 10110|CBn
= 10)

= q10(0)q010(0)q0010(1) + q10(1)q110(0)q0110(1)

= casc(10010) + casc(10110).

1.5.4. The meeting point

Summing up, the announced close encounter can be done with the following
(commutative) diagram, together with the following explanations.

MRC
(
JVn , Tn

)
n

VLMC (Un)n

MAP
(
JWn ,Mn

)
n

PRW (Sn)n

Semi-Markov
(
ZWn

)
n

Semi-Markov
(
ZVn
)
n

D

N

R

L

SV

B

SW

[1.5.5]
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The mapping D consists in defining the PRW from the VLMC: the random
increments of the PRW are the initial letters of a VLMC. With the notations above,
Sn =

∑
0≤k≤nXk where Xk is the initial letter of Uk.

The mapping L associates with a VLMC the process of its successive different
α-LIS that turns out to be a MRC when considered together with its jump times Tn –
see Section 1.5.3. Here, JVn is the n-th distinct α-LIS of the successive right-infinite
words U0, U1, U2, · · · and Tn is the length of the n-th run of identical letters in the
sequence X0, X1X2, · · · The power V refers to the VLMC.

The mapping B associates with a PRW (Sn)n the process of its successive
different bends (changes of directions). With our notations, JWn is the n-th distinct
bend and Mn is the value of S at the precise moment when the n-th bend JWn occurs
– see Section 1.5.2. The power W refers to the PRW.

The mapping SV only consists in defining a semi-Markov process from a MRC,
as stated in Section 1.5.1. The mapping SW is defined in the same manner: it maps a
MAP

(
JWn ,Mn

)
n

to the semi-Markov chain of the MRC
(
JWn ,Mn −Mn−1

)
n

.

The mapping N acts on the first coordinate by reversing words: JVn = JWn . The
notation w stands for the reversed word of w: ab = ba. For the second coordinate,
remark first that Mn −Mn−1 is always of the form kα where k is a positive integer
and α an increment vector. The integer Tn is this k.

Finally, the mapping R is simply the reversing of words: ZVn = ZWn .

In fact, in these particular situations (double and quadruple combs), the
composition SV ◦ L is a bijection – see Remark 1.3. Therefore, all these mappings
are also one-to-one, showing that all these processes are essentially equivalent.

Now that our different processes are related, let us translate the parameters,
properties and assumptions that come from the VLMC world in terms of PRW, and
vice-versa.

Dimension 1

The PRW in dimension 1 is driven by a VLMC based on the so-called double
comb, as it was defined in Example 1.2. The contexts of this tree are the ukd, which
have ud as an α-LIS and the dku which have du as an α-LIS (k ≥ 1 for both families
of contexts). The cascades of the contexts write

casc
(
ukd

)
=
k−1∏
j=1

qujd(u) and casc
(
dku

)
=
k−1∏
j=1

qdju(d)
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and there are two cascade series

κud =
∑
k≥1

casc
(
ukd

)
and κdu =

∑
k≥1

casc
(
dku

)
.

Theorem 1.3 guarantees that, under non-nullness assumption, this VLMC admits an
invariant probability measure if, and only if κud <∞ and κdu <∞. Since the double
comb is a very simple context tree, one can also make a direct computation that leads
to the following result: a non-null double-comb VLMC admits a σ-finite stationary
measure if, and only if casc

(
ukd

)
→ 0 and casc

(
dku

)
→ 0 when k tends to infinity.

It turns out that, on the side of the 1-dimensional PRW, Assumption 1 as well as
the expectations of the persistence times τu1 and τd1 are functions of these cascades so
that one can relate the above properties of the VLMC to the results of Section 1.3.1
on 1-dimensional PRW. The expectations of the waiting times are exactly the sums of
cascades: κud = Θu and κdu = Θd.

Finally, one can assert:

 casc
(
ukd

)
−→
k→∞

0

and

casc
(
dku

)
−→
k→∞

0

 ⇐⇒ Assumption 1

m m

 The VLMC admits
a σ−finite

invariant measure

⇐⇒ (
τu1 and τd1

are a.s. finite

)

and


∑
k≥1

casc
(
ukd

)
<∞

and∑
k≥1

casc
(
dku

)
<∞

 ⇐⇒
(

τu1 and τd1
are integrable

)

m

 The VLMC admits
a unique probability
invariant measure
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The link between recurrence or transience of the PRW and the behaviour of the
VLMC is only partial. For instance, the PRW may be recurrent while there is no
invariant probability measure for the VLMC. The PRW may even be transient while
the VLMC admits an invariant probability measure – see Table 1.3.1.1.

Dimension 2

The PRW in dimension 2 is driven by a VLMC based on the so-called quadruple
comb, as it is defined in Example 1.2. Here, the contexts are the αkβ, where α, β ∈
A = {n, e, w, s}, α 6= β, k ≥ 1. The α-LIS of the context αkβ is αβ, and its cascade
writes

casc
(
αkβ

)
=

k−1∏
i=1

qαiβ(α).

Therefore, there are twelve cascade series, namely

καβ =

∞∑
k=1

casc
(
αkβ

)
, α, β ∈ A, α 6= β. [1.5.6]

As in dimension 1, since the quadruple comb is a stable context tree having a finite
set of context α-LIS, the non-null VLMC that drives the 2-dimensional PRW admits
a unique stationary probability measure if, and only if the twelve cascade series 1.5.6
converge. This is a consequence of Theorem 1.3 and, here again, due to the simplicity
of the quadruple comb, on can directly check that a non-null quadruple-comb VLMC
admits a σ-finite stationary measure if, and only if casc

(
αkβ

)
→ 0 when k tends to

infinity, for every α, β ∈ A, α 6= β.

The transition matrix of the Markov process (Jn)n of the PRW bends, denoted
by P in Formula [1.3.12], writes also

P (βα, αγ) =
∑
n≥1

casc (γαnβ)

– all other entries vanish. Relating this expression to the definition [1.4.7] of the Q-
matrix of the VLMC leads to the following:

P (βα, αγ) = Qαβ,γα [1.5.7]

so that, up to the re-ordering that consists in reversing the indices αβ  βα, the
stochastic matrices P and Q are the same ones. Note that, since the quadruple comb
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is stable, the process of the α-LIS of the VLMC is Markovian and Q is its transition
matrix. Referring to the commutative diagram [1.5.5], Formula [1.5.7] amounts to
saying that the Markov chains

(
JVn
)
n

and
(
JWn

)
n

are identical.

In terms of persistence times of the PRW vs stationary measures for the VLMC,
the properties stated in Section 1.3.2 show that the following equivalences hold.

 for all α, β ∈ A, α 6= β,

casc
(
αkβ

)
−→
k→∞

0

⇐⇒ Assumption 2

m m

 The VLMC admits
a σ−finite

invariant measure

 ⇐⇒
(
∀n, Tn is a.s. finite

)

and

 for all α, β ∈ A, α 6= β,∑
k≥1

casc
(
αkβ

)
<∞

⇐⇒ (∀n, Tn is integrable)

m

 The VLMC admits
a unique probability
invariant measure


The counterexample cited in Theorem 1.2 is enlighted by these equivalences: an
example of recurrent 2-dimensional PRW having a transient skeleton (Mn)n cannot
be found without assuming that the Tn are a.s. finite but non-integrable, as shown
in Cénac et al. [8]. Reading the above equivalences shows that such a PRW must be
driven by a VLMC the series of cascades of which diverge while their general terms
tend to zero at infinity.
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